Math 300 Intro Math Reasoning Worksheet 06: Set Theory

(1) Prove by induction for $n \geq 1$ that

$$
1 \cdot 2+3 \cdot 4+\ldots+(2 n-1) \cdot 2 n=\frac{n(n+1)(4 n-1)}{3}
$$

Solution: By induction.

Base $n=11 \cdot 2=\frac{1 \cdot 2 \cdot 3}{3}$.
I.H. Assume that

$$
1 \cdot 2+3 \cdot 4+\ldots+(2 n-1) \cdot 2 n=\frac{n(n+1)(4 n-1)}{3}
$$

Step Let us prove that

$$
1 \cdot 2+3 \cdot 4+\ldots+(2 n-1) \cdot 2 n+(2 n+1)(2 n+2)=\frac{(n+1)(n+2)(4 n+3)}{3}
$$

Indeed,

$$
\begin{aligned}
& 1 \cdot 2+3 \cdot 4+\ldots+(2 n-1) \cdot 2 n+(2 n+1)(2 n+2)=\frac{n(n+1)(4 n-1)}{3}+2(2 n+1)(n+1)= \\
& \quad \frac{(n+1)[n(4 n-1)+6(2 n+1)]}{3}=\frac{(n+1)\left(4 n^{2}+11 n+6\right)}{3}=\frac{(n+1)(n+2)(4 n+3)}{3} \\
& \quad \text { as wanted. }
\end{aligned}
$$

(2) Prove that $A \subseteq B$ if and only if $P(A) \subseteq P(B)$.

Solution Let us prove the double implication. Suppose that $A \subseteq B$. WTP $P(A) \subseteq P(B)$. Let $X \in P(A)$. WTP $X \in P(B)$. By definition of powerset, $X \in P(A), X \subseteq A$ and since $A \subseteq B, X \subseteq B$. Hence $X \in P(B)$. In the other direction, suppose that $P(A) \subseteq P(B)$. WTP $A \subseteq B$. Note that since $A \subseteq A$, then $A \in P(A)$ and since $P(A) \subseteq P(B), A \in P(B)$. By definition of powerset again, $A \subseteq B$.
(3) Define

$$
t \cdot\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle=\left\langle t \cdot \alpha_{1}, \ldots ., t \cdot \alpha_{n}\right\rangle
$$

and denote by $\overrightarrow{0}=\langle 0,0, \ldots, 0\rangle$. Prove that for every $t \in \mathbb{R}$ and $\vec{\alpha} \in \mathbb{R}^{n}$, if $t \cdot \vec{\alpha}=\overrightarrow{0}$, then either $t=0$ or $\vec{\alpha}=\overrightarrow{0}$.

