Math 300 Intro Math Reasoning
 Worksheet 07: Functions

(1)
(1) $f_{1}: \mathbb{R} \rightarrow \operatorname{codom}\left(f_{1}\right)$, defined by $f_{1}(x)=5 x-x^{2}$. Compute $f_{1}(1)$.
(2) $f_{2}: P(\mathbb{R}) \rightarrow \operatorname{codom}\left(f_{2}\right)$, defined by $f_{2}(x)=x \cap \mathbb{N}$. Compute $f_{2}(\{1, \pi,-1\})$ and $f_{2}((-\infty, 5))$.
(3) $f_{3}: P(\mathbb{R}) \rightarrow \operatorname{codom}\left(f_{3}\right)$, defined by $f_{3}(X)=\langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q}\rangle$.

Compute $f_{3}(\mathbb{Z})$ and $f_{3}([-1,1])$.

Solution.

1) $f_{1}(1)=5(1)-1^{2}=4$
2) $f_{2}(\{1, \pi,-1\})=\{1\}$
$f_{2}((-\infty, 5))=[0,5)$
3) $f_{3}(\mathbb{Z})=\langle\mathbb{N}, \mathbb{Z}, \mathbb{Z}\rangle$ $f_{3}([-1,1]=\langle\{0,1\},\{-1,0,1\},\{n \in \mathbb{Q} \mid-1 \leq n \leq 1\}\rangle$
(2) For each of the functions from the previous exercise, find their domain and codomain.

Solution.

1) $\operatorname{dom}\left(f_{1}\right)=\mathbb{R}, \operatorname{codom}\left(f_{1}\right)=\mathbb{R}$
2) $\operatorname{dom}\left(f_{2}\right)=P(\mathbb{R}), \operatorname{codom}\left(f_{2}\right)=P(\mathbb{N})$
3) $\operatorname{dom}\left(f_{3}\right)=P(\mathbb{R}), \operatorname{codom}\left(f_{3}\right)=P(\mathbb{N}) \times P(\mathbb{Z}) \times P(\mathbb{Q})$
(3) Prove that for any two functions $f: A \rightarrow B$ and $g: B \rightarrow C$, and any $X \subseteq A$, $(g \circ f) \upharpoonright X=g \circ(f \upharpoonright X)$.

Solution. Let us prove function equality. Let $x \in X, \operatorname{WTP}(g \circ f) \upharpoonright X(x)=g \circ(f \upharpoonright X)(x)$. Indeed,

$$
(g \circ f) \upharpoonright X(x)=(g \circ f)(x)=g(f(x))=g(f \upharpoonright X(x))=g \circ(f \upharpoonright X)(x)
$$

