Math 300 Intro Math Reasoning Worksheet 08: Equinnumerability

(1)
(1) Let $Y=\{n+2 \mid n \in \mathbb{N}\} \subseteq \mathbb{N}$. Find a bijective map $f: \mathbb{N} \longrightarrow Y$.
(2) Show that $(-1,2) \sim(6,7)$
(3) Find an injection from $\mathbb{N} \times \mathbb{N}$ into $P(\mathbb{N})$.

Solution.

(1) $f(n)=n+2$.
(2) $f(x)=\frac{x+1}{3}+6$.
(3) $f: \mathbb{N} \times \mathbb{N} \rightarrow P(\mathbb{N}) f(\langle n, m\rangle)=\{n, n+m\}$.
(2) Suppose that $A \sim B$ and $C \sim D$. Prove that $A \times C \sim B \times D$

Solution. Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be bijections. Define $h: A \times C \rightarrow B \times D$ $h(\langle a, c\rangle)=\langle f(a), g(c)\rangle$. Prove that h is one-to-one. Let us prove for example that h is onto. Let $\langle b, d\rangle \in B \times D$. Since f, g are onto, there are $a \in A$ and $c \in C$ such that $f(a)=b$ and $g(c)=d$. Then $\langle a, c\rangle \in A \times C$ and $h(\langle a, c\rangle)=\langle f(a), g(c)\rangle=\langle b, d\rangle$.

