Math 300 Intro Math Reasoning Worksheet 08: Equinnumerability

(1)

- (1) Let $Y = \{n + 2 \mid n \in \mathbb{N}\} \subseteq \mathbb{N}$. Find a bijective map $f : \mathbb{N} \longrightarrow Y$.
- (2) Show that $(-1,2) \sim (6,7)$
- (3) Find an injection from $\mathbb{N} \times \mathbb{N}$ into $P(\mathbb{N})$.

Solution.

(1) f(n) = n + 2.(2) $f(x) = \frac{x+1}{3} + 6.$ (3) $f: \mathbb{N} \times \mathbb{N} \to P(\mathbb{N}) f(\langle n, m \rangle) = \{n, n + m\}.$

(2) Suppose that $A \sim B$ and $C \sim D$. Prove that $A \times C \sim B \times D$

Solution. Let $f : A \to B$ and $g : C \to D$ be bijections. Define $h : A \times C \to B \times D$ $h(\langle a, c \rangle) = \langle f(a), g(c) \rangle$. Prove that h is one-to-one. Let us prove for example that h is onto. Let $\langle b, d \rangle \in B \times D$. Since f, g are onto, there are $a \in A$ and $c \in C$ such that f(a) = b and g(c) = d. Then $\langle a, c \rangle \in A \times C$ and $h(\langle a, c \rangle) = \langle f(a), g(c) \rangle = \langle b, d \rangle$.