Problem 1. Prove or disprove the following items:

- (a) $\{1, -1\} \subseteq \mathbb{Z}$.
- (b) $7 \in \{n \in \mathbb{N} \mid |n^2 n 3| \le 5\}.$
- (c) $27 \in \{n^2 n 3 \mid n \in \mathbb{N}\}.$
- (d) $-3 \in \{n^2 3 \mid n \in \mathbb{N}_+\}.$
- (e) $\{1, -1\} \in \{X \subseteq \mathbb{Z} \mid 2 \in X\}.$
- (f) $\{r \in \mathbb{R} \mid \exists q \in \mathbb{Q}. r + q \in \mathbb{Q}\} = \mathbb{Q}.$
- (g) $\{-1, 0, 1\} \subseteq \{x \in \mathbb{N} \mid x^2 = |x|\}$. (Here |x| is the absolute value of the real number x)
- (h) $\{x \in \mathbb{R} \mid \{x, x+1\} \subseteq [0, 2)\} \subseteq [0, 1].$
- (i) $\mathbb{Q} \subseteq \{x \in \mathbb{R} \mid |\{x, x + \sqrt{2}\} \cap \mathbb{Q}| = 1\}$

Solution. (a) Prove! $1 \in \mathbb{Z}$ and $-1 \in \mathbb{Z}$ therefore $\{1, -1\} \subseteq \mathbb{Z}$.

- (b) Disprove! |7² 7 3 = 39| = 39 > 5 so by the comprehension principle
 7 is not in the set.
- (c) Prove! By the replacement principle, we need to prove that there if $n \in \mathbb{N}$ such that $27 = n^2 n 3$. Let n = 6, then $6^2 6 3 = 36 9 = 27$.
- (d) Disprove. Suppose toward a contradiction that $-3 \in \{n^2 3 \mid n \in \mathbb{N}_+\}$, then by the replacment principle there is $n \in \mathbb{N}_+$ such that $-3 = n^2 3$. Hence $n^2 = 0$ which implies that n = 0. However $n \in \mathbb{N}_+$, contradiction.

- (e) Disprove! 2 ∉ {1, −1} and therefore by the comprehension principle {1, −1} is not in the set.
- (f) Prove! by double inclusion:

MATH 361

- <u>⊆</u>: Let $x \in \{r \in \mathbb{R} \mid \exists q \in \mathbb{Q}, r + q \in \mathbb{Q}\}$. There by the comprehension principle, there is $p \in \mathbb{Q}$ such that $r + p \in \mathbb{Q}$. It follows that r = (r + p) p is the difference of two rational numbers and therefore $r \in \mathbb{Q}$.
- ⊇: Let $r \in \mathbb{Q}$, then $0 \in \mathbb{Q}$ is such that $r + 0 = r \in \mathbb{Q}$. It follows that there is $q \in \mathbb{Q}$ such that $r + q \in \mathbb{Q}$. By the comprehension principle, $r \in \{r \in \mathbb{R} \mid \exists q \in \mathbb{Q}, r + q \in \mathbb{Q}\}$.
- (g) Disprove! $-1 \in \{1, 0, -1\}$ but $-1 \notin \mathbb{N}$ hence by the comprehension principle $-1 \notin \{x \in \mathbb{N} \mid x^2 = |x|\}$. It follows that $\{1, 0, -1\} \nsubseteq \{x \in \mathbb{N} \mid x^2 = |x|\}$.
- (h) Prove! Let $r \in \{x \in \mathbb{R} \mid \{x, x + 1\} \subseteq [0, 2)\}$ then $r, r + 1 \in [0, 2)$ and therefore $0 \le r$ and r + 1 < 2. It follows that r < 1 and therefore $r \in [0, 1)$.
- (i) Per demand.

Problem 2. Prove that if *A*, *B*, *C* are sets then

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Solution. We prove a double inclusion:

<u>⊆</u>: Let $x \in A \cup (B \cap C)$. The by the definition of union either $x \in A$ or $x \in B \cap C$. We split into cases:

- (a) If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ by the definition of union. By definition of intersection $x \in (A \cup B) \cap (AC)$.
- (b) If x ∈ B ∩ C, then by definition on intersection x ∈ B and x ∈ C. Hence x ∈ A ∪ B and x ∈ A ∪ C by the definition of union and again by definition of intersection x ∈ (A ∪ B) ∩ (A ∩ C).

In any case $x \in (A \cup B) \cap (A \cup C)$.

MATH 361

- <u>⊇</u>: Let $x \in (A \cup B) \cap (A \cup C)$. Then by definition of intersection $x \in A \cup B$ and $x \in A \cup C$. LEt us split into cases:
 - (a) If $x \in A$, then by definition of union $x \in A \cup (B \cap C)$.
 - (b) If x ∉ A, since x ∈ A ∪ B and x ∈ A ∪ C, then by definition of union x ∈ B and x ∈ C. By definition of intersection x ∈ B ∩ C. By definition of union x ∈ A ∪ (B ∩ C).

Problem 3. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that

- (a) $A \cap \bigcup \mathcal{B} = \bigcup \{A \cap B \mid B \in \mathcal{B}\}.$
- (b) $A \setminus \bigcap \mathcal{B} = \bigcup \{A \setminus B \mid B \in \mathcal{B}\}.$

Solution. We will prove item (1) as an example: By double inclusion:

⊆: Let $x \in A \cap \bigcup \mathcal{B}$. By definition of intersection $x \in A$ and $x \in \bigcup \mathcal{B}$. By definition of generalized union, there is $B_0 \in \mathcal{B}$ such that $x \in B_0$. It follows that $x \in A \cap B_0$. Since $A \cap B_0 \in \{A \cap B \mid B \in \mathcal{B}\}$, and by the definition of generalized union, $x \in \bigcup \{A \cap B \mid B \in \mathcal{B}\}$.

	Homework 1	
MATH 361	(due September 2)	August 2, 2022

<u>⊇</u>: Let $x \in \bigcup \{A \cap B \mid B \in \mathcal{B}\}$. Then by the definition of generalized union, there is $B \in \mathcal{B}$ such that $x \in A \cap B$. By definition of intersection $x \in A$ and $x \in B$. It follows the $x \in \bigcup \mathcal{B}$ and by definition on intersection $x \in A \cap \bigcup \mathcal{B}$.

Problem 4. Let *A*, *B* be sets. prove that for any $a \in A$ and $b \in B$, $\langle a, b \rangle \in P(P(A \cup B))$. Conclude formally from the axioms that there is a unique set *D* which equals $A \times B$. Namely, that for every $x, x \in D$ if and only if $x = \langle a, b \rangle$ for some $a \in A$ and $b \in B$.

Problem 5. Prove that for every sets *A*, *B*, *C*,

$$A \times (B \cap C) = (A \times B) \cap (A \times C).$$

Solution. Let *A*, *B*, *C* be any sets. We want to prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. We will prove this by double inclusion.

- 1. We will first show that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. Let $(x, y) \in A \times (B \cap C)$. We will show that $(x, y) \in (A \times B) \cap (A \times C)$. By definition, $x \in A$ and $y \in (B \cap C)$. Thus, $y \in B$, and so $(x, y) \in A \times B$. Similarly, $y \in C$ and thus $(x, y) \in A \times C$. Therefore, $(x, y) \in (A \times B) \cap (A \times C)$.
- 2. We will now show that $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$. Let $(x, y) \in (A \times B) \cap (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \in A \times C$. By definition, $x \in A$ and $y \in B$. Similarly, $x \in A$ and $y \in C$. It follows that $x \in A$ and $y \in B \cap C$. Then by definition, $(x, y) \in A \times (B \cap C)$.

Therefore, $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Additional problems:

Problem 6. Prove implications $(3) \Rightarrow (4)$ and $(4) \Rightarrow (1)$ of Proposition 2.9.

Problem 7. Let *X* and *Y* be sets.

- (i) Prove that $Y \setminus (Y \setminus X) = X \cap Y$.
- (ii) Prove that $X \subseteq Y$ if and only if $X \cup Y = Y$.
- (iii) Deduce that $X \subseteq Y$ if and only if $Y \setminus (Y \setminus X) = X$.
- **Solution.** (i) Let *X* and *Y* be sets. We want to prove that $Y \setminus (Y \setminus X) = X \cap Y$. We will prove this by double inclusion.
 - (1) We will first prove that Y\(Y\X) ⊆ X ∩ Y. Let x ∈ Y\(Y\X).
 We want to prove x ∈ X ∩ Y. By the separation principle, x ∈ Y ∧ x ∉ (Y\X). Using the definition of Y − X and the separation principle, we have:

$$\neg (x \in Y \land x \notin X)$$
$$\equiv \neg (x \in Y) \lor \neg (x \notin X)$$
$$\equiv x \notin Y \lor x \in X$$

As $x \in Y$, we must have $x \in X$. Thus, $x \in Y \land x \in X$, and therefore $x \in X \cap Y$.

(2) We will now show that X ∩ Y ⊆ Y − (Y − X). Let x ∈ X ∩ Y. Then x ∈ X ∧ x ∈ Y. We want to show that x ∈ Y − (Y − X). As x ∈ Y is given, we must show that x ∉ Y − X. By the previous result, this is equivalent to x ∉ Y ∨ x ∈ X. By our assumption, $x \in Y$, so we must have $x \in X$. Therefore, $x \notin Y - X$. Thus, by definition, $x \in Y - (Y - X)$, and so $X \cap Y \subseteq Y - (Y - X)$.

Therefore, by double inclusion, $Y \setminus (Y \setminus X) = X \cap Y$.

- (ii) Let *X*, *Y* be sets. We want to prove that $X \subseteq Y \iff X \cup Y = Y$. We will prove this via double implication.
 - (1) We will first show that $X \subseteq Y \implies X \cup Y = Y$. Assume that $X \subseteq Y$. We want to prove that $X \cup Y = Y$. We will prove this by double inclusion.
 - i. Clearly, $Y \subseteq X \cup Y$.
 - ii. So, we will now show that $X \cup Y \subseteq Y$. Let $x \in X \cup Y$. Then $x \in X \lor x \in Y$. If $x \in Y$, we are done. If $x \in X$, then by our assumption, $x \in Y$. Thus, $X \cup Y \subseteq Y$.

Thus, by double inclusion, $X \cup Y = Y$, and so $X \subseteq Y \implies$ $X \cup Y = Y$.

(2) We will now show that $X \cup Y = Y \implies X \subseteq Y$. Assume that $X \cup Y = Y$, and $x \in X$. We want to show that $x \in Y$. Clearly, $x \in X \cup Y$. By our assumption, we know $X \cup Y = Y$. Then by definition, $x \in Y$. Thus, $X \cup Y = Y \implies X \subseteq Y$.

Therefore, by double implication, $X \subseteq Y \iff X \cup Y = Y$.

(iii) It follows from these results that $X \subseteq Y \iff Y - (Y - X) = X$. We will show this by double implication:

(1) We will first show that $X \subseteq Y \implies Y - (Y - X) = X$. Assume that $X \subseteq Y$. By (i), we know that $Y - (Y - X) = X \cap Y$. By (ii) and our assumption, we know $X \cup Y = Y$. Thus, substitution and transitivity gives us

$$(X \subseteq Y \implies Y - (Y - X) = X) \equiv (X \cup Y = Y \implies X \cap Y = X)$$

This implication was proven previously, so we have $X \subseteq Y \implies$ Y - (Y - X) = X.

(2) We will now show that $Y - (Y - X) = X \implies X \subseteq Y$. Assume that Y - (Y - X) = X. Similarly to (1), we know from (i) that $Y - (Y - X) = X \cap Y$. Then by substitution, $X \cap Y = X$, which is known to imply $X \subseteq Y$. Thus $Y - (Y - X) = X \implies X \subseteq Y$.

Therefore, by double implication, $X \subseteq Y \iff Y - (Y - X) = X$.

Problem 8. Compute the following sets. No proof required.

1. $\left\{a + b : a \in \{0, 5\}, b \in \{2, 4\}\right\} \setminus \{7, 10\}.$ 2. $(1, 3) \cup [2, 4)$ 3. $\mathbb{Z} \cap [0, \infty)$

4. $\mathbb{N}_{even}\Delta\mathbb{N}_+$

Solution. 1) $\{2, 4, 9\}$

2) (1,4)

3) N

(due September 2)

4) $\{0\} \cup \mathbb{N}_{odd}$

Problem 9. Prove that for every two sets *A*, *B* the following are equivalent:

- $A \subseteq B$.
- $P(A \cup B) = P(B)$.
- $P(A) \subseteq P(B)$.

[Remember: You are allowed to use the propositions and statements which appear in the class notes.]

Solution. We will show these equivalences via a chain of implications..

- 1. We will first show that $A \subseteq B \implies P(A \cup B) = P(B)$. Let *A*, *B* be sets such that $A \subseteq B$. We want to prove $P(A \cup B) = P(B)$. We will prove this by double inclusion.
 - (a) We will first show that $P(A \cup B) \subseteq P(B)$. Let $X \in P(A \cup B)$. Then $X \subseteq A \cup B$. So, let $x \in X$. By definition, $x \in A \lor x \in X$. Then we have the following cases:
 - i. Suppose $x \in B$. Then $X \subseteq B$, and thus $X \in P(B)$.
 - ii. Suppose $x \in A$. Then by our assumption, $x \in B$ and so we know $X \in P(B)$.
 - (b) We will now show that $P(B) \subseteq P(A \cup B)$. Let $X \in P(B)$ and $x \in X$. Then $X \subseteq B$ and so $x \in B$. We want to show that $X \in P(A \cup B)$. We know $x \in B$, so clearly $x \in A \cup B$. Thus, $X \subseteq A \cup B$ and so $X \in P(A \cup B)$.

Therefore, $A \subseteq B \implies P(A \cup B) = P(B)$.

- 2. We will now show that $P(A \cup B) = P(B) \implies P(A) \subseteq P(B)$. Assume $P(A \cup B) = P(B)$, and let $X \in P(A)$ and $x \in X$. Then $x \in A$, and so clearly $x \in A \cup B$. Thus, $X \subseteq A \cup B$ and $X \in P(A \cup B)$. Therefore, by our assumption, we have $X \in P(B)$.
- 3. We will finally show that $P(A) \subseteq P(B) \implies A \subseteq B$. So, assume $P(A) \subseteq P(B)$ and let $a \in A$. Then there exists some $X \subseteq A$ such that $a \in X$. Then $X \in P(A)$, so by our assumption $X \in P(B)$. Therefore, $X \subseteq B$ and thus $a \in B$.

Therefore, these statements are equivalent.