Homework 1

MATH 361

Problem 1. Prove or disprove the following items:
(a) $\{1,-1\} \subseteq \mathbb{Z}$.
(b) $7 \in\left\{n \in \mathbb{N}\left|\left|n^{2}-n-3\right| \leq 5\right\}\right.$.
(c) $27 \in\left\{n^{2}-n-3 \mid n \in \mathbb{N}\right\}$.
(d) $-3 \in\left\{n^{2}-3 \mid n \in \mathbb{N}_{+}\right\}$.
(e) $\{1,-1\} \in\{X \subseteq \mathbb{Z} \mid 2 \in X\}$.
(f) $\{r \in \mathbb{R} \mid \exists q \in \mathbb{Q} \cdot r+q \in \mathbb{Q}\}=\mathbb{Q}$.
(g) $\{-1,0,1\} \subseteq\left\{x \in \mathbb{N}\left|x^{2}=|x|\right\}\right.$. (Here $|x|$ is the absolute valure of the real number x)
(h) $\{x \in \mathbb{R} \mid\{x, x+1\} \subseteq[0,2)\} \subseteq[0,1]$.
(i) $\mathbb{Q} \subseteq\{x \in \mathbb{R}||\{x, x+\sqrt{2}\} \cap \mathbb{Q}|=1\}$

Solution. (a) Prove! $1 \in \mathbb{Z}$ and $-1 \in \mathbb{Z}$ therefore $\{1,-1\} \subseteq \mathbb{Z}$.
(b) Disprove! $\left|7^{2}-7-3=39\right|=39>5$ so by the comprehension principle 7 is not in the set.
(c) Prove! By the replacement principle, we need to prove that there if $n \in \mathbb{N}$ such that $27=n^{2}-n-3$. Let $n=6$, then $6^{2}-6-3=36-9=27$.
(d) Disprove. Suppose toward a contradiction that $-3 \in\left\{n^{2}-3 \mid n \in \mathbb{N}_{+}\right\}$, then by the replacment principle there is $n \in \mathbb{N}_{+}$such that $-3=$ $n^{2}-3$. Hence $n^{2}=0$ which implies that $n=0$. However $n \in \mathbb{N}_{+}$, contradiction.

Homework 1

MATH 361
(e) Disprove! $2 \notin\{1,-1\}$ and therefore by the comprehension principle $\{1,-1\}$ is not in the set.
(f) Prove! by double inclusion:
\subseteq : Let $x \in\{r \in \mathbb{R} \mid \exists q \in \mathbb{Q}, r+q \in \mathbb{Q}\}$. There by the comprehension principle, there is $p \in \mathbb{Q}$ such that $r+p \in \mathbb{Q}$. It follows that $r=(r+p)-p$ is the difference of two rational numbers and therefore $r \in \mathbb{Q}$.
\supseteq : Let $r \in \mathbb{Q}$, then $0 \in \mathbb{Q}$ is such that $r+0=r \in \mathbb{Q}$. It follows that there is $q \in \mathbb{Q}$ such that $r+q \in \mathbb{Q}$. By the comprehension principle, $r \in\{r \in \mathbb{R} \mid \exists q \in \mathbb{Q}, r+q \in \mathbb{Q}\}$.
(g) Disprove! $-1 \in\{1,0,-1\}$ but $-1 \notin \mathbb{N}$ hence by the comprehension principle $-1 \notin\left\{x \in \mathbb{N}\left|x^{2}=|x|\right\}\right.$. It follows that $\{1,0,-1\} \nsubseteq\{x \in \mathbb{N} \mid$ $\left.x^{2}=|x|\right\}$.
(h) Prove! Let $r \in\{x \in \mathbb{R} \mid\{x, x+1\} \subseteq[0,2)\}$ then $r, r+1 \in[0,2)$ and therefore $0 \leq r$ and $r+1<2$. It follows that $r<1$ and therefore $r \in[0,1)$.
(i) Per demand.

Problem 2. Prove that if A, B, C are sets then

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution. We prove a double inclusion:
\subseteq : Let $x \in A \cup(B \cap C)$. The by the definition of union either $x \in A$ or $x \in B \cap C$. We split into cases:

Homework 1

MATH 361
(a) If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ by the definition of union. By definition of intersection $x \in(A \cup B) \cap(A C)$.
(b) If $x \in B \cap C$, then by definition on intersection $x \in B$ and $x \in C$. Hence $x \in A \cup B$ and $x \in A \cup C$ by the definition of union and again by definition of intersection $x \in(A \cup B) \cap(A \cap C)$.

In any case $x \in(A \cup B) \cap(A \cup C)$.

〇: Let $x \in(A \cup B) \cap(A \cup C)$. Then by definition of intersection $x \in A \cup B$ and $x \in A \cup C$. LEt us split into cases:
(a) If $x \in A$, then by definition of union $x \in A \cup(B \cap C)$.
(b) If $x \notin A$, since $x \in A \cup B$ and $x \in A \cup C$, then by definition of union $x \in B$ and $x \in C$. By definition of intersection $x \in B \cap C$. By definition of union $x \in A \cup(B \cap C)$.

Problem 3. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that
(a) $A \cap \bigcup \mathcal{B}=\bigcup\{A \cap B \mid B \in \mathcal{B}\}$.
(b) $A \backslash \cap \mathcal{B}=\bigcup\{A \backslash B \mid B \in \mathcal{B}\}$.

Solution. We will prove item (1) as an example: By double inclusion:
\subseteq : Let $x \in A \cap \bigcup \mathcal{B}$. By definition of intersection $x \in A$ and $x \in \bigcup \mathcal{B}$. By definition of generalized union, there is $B_{0} \in \mathcal{B}$ such that $x \in B_{0}$. It follows that $x \in A \cap B_{0}$. Since $A \cap B_{0} \in\{A \cap B \mid B \in \mathcal{B}\}$, and by the definition of generalized union, $x \in \bigcup\{A \cap B \mid B \in \mathcal{B}\}$.

Homework 1

〇: Let $x \in \bigcup\{A \cap B \mid B \in \mathcal{B}\}$. Then by the definition of generalized union, there is $B \in \mathcal{B}$ such that $x \in A \cap B$. By definition of intersection $x \in A$ and $x \in B$. It follows the $x \in \bigcup \mathcal{B}$ and by definition on intersection $x \in A \cap \bigcup \mathcal{B}$.

Problem 4. Let A, B be sets. prove that for any $a \in A$ and $b \in B,\langle a, b\rangle \in$ $P(P(A \cup B))$. Conclude formally from the axioms that there is a unique set D which equals $A \times B$. Namely, that for every $x, x \in D$ if and only if $x=\langle a, b\rangle$ for some $a \in A$ and $b \in B$.

Problem 5. Prove that for every sets A, B, C,

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

Solution. Let A, B, C be any sets. We want to prove that $A \times(B \cap C)=$ $(A \times B) \cap(A \times C)$. We will prove this by double inclusion.

1. We will first show that $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$. Let $(x, y) \in$ $A \times(B \cap C)$. We will show that $(x, y) \in(A \times B) \cap(A \times C)$. By definition, $x \in A$ and $y \in(B \cap C)$. Thus, $y \in B$, and so $(x, y) \in A \times B$. Similarly, $y \in C$ and thus $(x, y) \in A \times C$. Therefore, $(x, y) \in(A \times B) \cap(A \times C)$.
2. We will now show that $(A \times B) \cap(A \times C) \subseteq A \times(B \cap C)$. Let $(x, y) \in$ $(A \times B) \cap(A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \in A \times C$. By definition, $x \in A$ and $y \in B$. Similarly, $x \in A$ and $y \in C$. It follows that $x \in A$ and $y \in B \cap C$. Then by definition, $(x, y) \in A \times(B \cap C)$.

Therefore, $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

Homework 1

MATH 361

Additional problems:

Problem 6. Prove implications $(3) \Rightarrow(4)$ and $(4) \Rightarrow(1)$ of Proposition 2.9.
Problem 7. Let X and Y be sets.
(i) Prove that $Y \backslash(Y \backslash X)=X \cap Y$.
(ii) Prove that $X \subseteq Y$ if and only if $X \cup Y=Y$.
(iii) Deduce that $X \subseteq Y$ if and only if $Y \backslash(Y \backslash X)=X$.

Solution. (i) Let X and Y be sets. We want to prove that $Y \backslash(Y \backslash X)=$ $X \cap Y$. We will prove this by double inclusion.
(1) We will first prove that $Y \backslash(Y \backslash X) \subseteq X \cap Y$. Let $x \in Y \backslash(Y \backslash X)$. We want to prove $x \in X \cap Y$. By the separation principle, $x \in Y \wedge x \notin(Y \backslash X)$. Using the definition of $Y-X$ and the separation principle, we have:

$$
\begin{array}{r}
\neg(x \in Y \wedge x \notin X) \\
\equiv \neg(x \in Y) \vee \neg(x \notin X) \\
\equiv x \notin Y \vee x \in X
\end{array}
$$

As $x \in Y$, we must have $x \in X$. Thus, $x \in Y \wedge x \in X$, and therefore $x \in X \cap Y$.
(2) We will now show that $X \cap Y \subseteq Y-(Y-X)$. Let $x \in X \cap Y$. Then $x \in X \wedge x \in Y$. We want to show that $x \in Y-(Y-X)$. As $x \in Y$ is given, we must show that $x \notin Y-X$. By the previous result, this is equivalent to $x \notin Y \vee x \in X$. By our assumption,

Homework 1

MATH 361
$x \in Y$, so we must have $x \in X$. Therefore, $x \notin Y-X$. Thus, by definition, $x \in Y-(Y-X)$, and so $X \cap Y \subseteq Y-(Y-X)$.

Therefore, by double inclusion, $Y \backslash(Y \backslash X)=X \cap Y$.
(ii) Let X, Y be sets. We want to prove that $X \subseteq Y \Longleftrightarrow X \cup Y=Y$. We will prove this via double implication.
(1) We will first show that $X \subseteq Y \Longrightarrow X \cup Y=Y$. Assume that $X \subseteq Y$. We want to prove that $X \cup Y=Y$. We will prove this by double inclusion.
i. Clearly, $Y \subseteq X \cup Y$.
ii. So, we will now show that $X \cup Y \subseteq Y$. Let $x \in X \cup Y$. Then $x \in X \vee x \in Y$. If $x \in Y$, we are done. If $x \in X$, then by our assumption, $x \in Y$. Thus, $X \cup Y \subseteq Y$.

Thus, by double inclusion, $X \cup Y=Y$, and so $X \subseteq Y \Longrightarrow$ $X \cup Y=Y$.
(2) We will now show that $X \cup Y=Y \Longrightarrow X \subseteq Y$. Assume that $X \cup Y=Y$, and $x \in X$. We want to show that $x \in Y$. Clearly, $x \in X \cup Y$. By our assumption, we know $X \cup Y=Y$. Then by definition, $x \in Y$. Thus, $X \cup Y=Y \Longrightarrow X \subseteq Y$.

Therefore, by double implication, $X \subseteq Y \Longleftrightarrow X \cup Y=Y$.
(iii) It follows from these results that $X \subseteq Y \Longleftrightarrow Y-(Y-X)=X$. We will show this by double implication:

Homework 1

MATH 361
(1) We will first show that $X \subseteq Y \Longrightarrow Y-(Y-X)=X$. Assume that $X \subseteq Y$. By (i), we know that $Y-(Y-X)=X \cap Y$. By (ii) and our assumption, we know $X \cup Y=Y$. Thus, substitution and transitivity gives us

$$
(X \subseteq Y \Longrightarrow Y-(Y-X)=X) \equiv(X \cup Y=Y \Longrightarrow X \cap Y=X)
$$

This implication was proven previously, so we have $X \subseteq Y \Longrightarrow$ $Y-(Y-X)=X$.
(2) We will now show that $Y-(Y-X)=X \Longrightarrow X \subseteq Y$. Assume that $Y-(Y-X)=X$. Similarly to (1), we know from (i) that $Y-(Y-X)=X \cap Y$. Then by substitution, $X \cap Y=X$, which is known to imply $X \subseteq Y$. Thus $Y-(Y-X)=X \Longrightarrow X \subseteq Y$.

Therefore, by double implication, $X \subseteq Y \Longleftrightarrow Y-(Y-X)=X$.
Problem 8. Compute the following sets. No proof required.

1. $\{a+b: a \in\{0,5\}, b \in\{2,4\}\} \backslash\{7,10\}$.
2. $(1,3) \cup[2,4)$
3. $\mathbb{Z} \cap[0, \infty)$
4. $\mathbb{N}_{\text {even }} \Delta \mathbb{N}_{+}$

Solution. 1) $\{2,4,9\}$
2) $(1,4)$
3) \mathbb{N}

Homework 1

MATH 361
4) $\{0\} \cup \mathbb{N}_{\text {odd }}$

Problem 9. Prove that for every two sets A, B the following are equivalent:

- $A \subseteq B$.
- $P(A \cup B)=P(B)$.
- $P(A) \subseteq P(B)$.
[Remember: You are allowed to use the propositions and statements which appear in the class notes.]

Solution. We will show these equivalences via a chain of implications..

1. We will first show that $A \subseteq B \Longrightarrow P(A \cup B)=P(B)$. Let A, B be sets such that $A \subseteq B$. We want to prove $P(A \cup B)=P(B)$. We will prove this by double inclusion.
(a) We will first show that $P(A \cup B) \subseteq P(B)$. Let $X \in P(A \cup B)$. Then $X \subseteq A \cup B$. So, let $x \in X$. By definition, $x \in A \vee x \in X$. Then we have the following cases:
i. Suppose $x \in B$. Then $X \subseteq B$, and thus $X \in P(B)$.
ii. Suppose $x \in A$. Then by our assumption, $x \in B$ and so we know $X \in P(B)$.
(b) We will now show that $P(B) \subseteq P(A \cup B)$. Let $X \in P(B)$ and $x \in X$. Then $X \subseteq B$ and so $x \in B$. We want to show that $X \in P(A \cup B)$. We know $x \in B$, so clearly $x \in A \cup B$. Thus, $X \subseteq A \cup B$ and so $X \in P(A \cup B)$.

Homework 1

MATH 361

Therefore, $A \subseteq B \Longrightarrow P(A \cup B)=P(B)$.
2. We will now show that $P(A \cup B)=P(B) \Longrightarrow P(A) \subseteq P(B)$. Assume $P(A \cup B)=P(B)$, and let $X \in P(A)$ and $x \in X$. Then $x \in A$, and so clearly $x \in A \cup B$. Thus, $X \subseteq A \cup B$ and $X \in P(A \cup B)$. Therefore, by our assumption, we have $X \in P(B)$.
3. We will finally show that $P(A) \subseteq P(B) \Longrightarrow A \subseteq B$. So, assume $P(A) \subseteq P(B)$ and let $a \in A$. Then there exists some $X \subseteq A$ such that $a \in X$. Then $X \in P(A)$, so by our assumption $X \in P(B)$. Therefore, $X \subseteq B$ and thus $a \in B$.

Therefore, these statements are equivalent.

