(due Dec 9)

Problem 1. Suppose that $\langle A, <_A \rangle$ is a well-ordered set. Prove that if $f : A \rightarrow A$ is order-preserving then $f = id_A$.

Solution. Otherwise, let $D = \{x \in A \mid f(x) \neq x\} \neq \emptyset$. Let $x^* = \min(D)$. Then for every $x <_A x^*$, f(x) = x by minimality of x^* . Hence $f(x^*) >_A x^*$ (otherwise, f is not one-to-one). Since f is an isomorphism, there is $y \in A$ such that $f(y) = x^*$. Since $f(y) <_A f(x^*)$, then $y <_A x^*$, but then $x^* = f(y) = y$, contradiciton.

Problem 2. Prove that if *A* is countable the *A* can be well-ordered.

Instruction: Split into two cases- first prove that every linear strong order on a finite set is a well order. If *A* is infinitely countable, then by taking any bijection $f : \mathbb{N} \to A$, we can define $<_A$ on *A* by $a <_A b$ if and only if $f^{-1}(a) < f^{-1}(b)$. Prove that $\langle A, <_A \rangle \simeq \langle \mathbb{N}, < \rangle$ and deduce that $\langle A, <_A \rangle$ is a well ordered set.

Solution. Take any injection $f : A \to \mathbb{N}$, we can define $<_A$ on A by $a <_A b$ if and only if f(a) < f(b). Then by definition, f is order-preserving and injective. Note that $a <_A b <_A c$ then f(a) < f(b) < f(c) and therefore f(a) < f(c) so $a <_A c$ (namely $<_A$ is transitive). If $a <_A b$ then f(a) < f(b) so $f(b) \notin f(a)$ and therefore $b \notin Aa$. It is linear since for every $a, b \in A$, f(a), f(b) are comparable hence a, b are $<_A$ -comparable. So far we proved that $<_A$ is a strong linear order on A. Let us prove that it is a well order. Let $X \subseteq A$, be a non-empty set. Then $f''X \subseteq \mathbb{N}$ is non-empty and therefore there is $n^* = \min(f''X)$. Let $x \in X$ be such that $f(x) = n^*$, then for every $y \in X$, $f(y) \ge n^* = f(x)$ and therefore $y \ge_A x$. It follows that $x = \min_{<A}(X)$.

Problem 3. Prove that if $\langle A, <_A \rangle$ is a well-ordered set and $X \subseteq A$ is an initial segment (i.e. $\forall x \in X \forall a \in A, a <_A x \Rightarrow a \in X$) then either X = A or $\exists a \in A$ such that $X = A_{<A}[a]$.

Hint: If $X \neq A$ let $a = \min_{\leq A} (A \setminus X)$ (why does it exists?), prove that $X = A_{\leq A}[a]$.

Solution. If X = A we are done. Otherwise, $X \subsetneq A$, so $A \setminus X \neq \emptyset$. Let $a = \min_{\langle A \rangle}(A \setminus X)$ and let us prove that $A_{\langle A \rangle}[a] = X$ by double inclusion. If $b <_A a$, then $b \in A$ and $b \notin A \setminus X$ (otherwise this would contradict the minimality of *a*) and therefore $b \in X$. If $x \in X$, then x, *a* are $<_A$ -comperable. If a = x, then $a \in X$, contradiction. If $a <_A x$, then $a \in X$ since X is an initial segment. Hence $x <_A a$, namely $x \in A_{\langle A \rangle}[a]$.

Problem 4. Prove that the axiom of foundation implies that there is no *x* such that $x \in x$.

Solution. Suppose otherwise, and let $x \in x$. Define $\{x\}$. By the axiom of foundation there is $y \in \{x\}$ such that $y \cap \{x\} = \emptyset$. But then y = x and $x \in x \cap \{x\}$, contradiction.

Problem 5. Prove that if *A* is a set of ordinals then $\bigcup A$ is an ordinal

Solution. First let us note that $\bigcup A$ is a transitive set. If $x \in y \in \bigcup A$, then there is $\alpha \in A$ such that $y \in \alpha$. Since α is transitive it follows that $x \in \alpha$ and therefore $x \in \bigcup A$. To see that \in well-orders $\bigcup A$, let $x \in y \in z$ all in $\bigcup A$, there there are $\alpha, \beta, \gamma \in A$ such that $a \in \alpha, y \in \beta, z \in \gamma$. Since every two ordinals are comparable, WLOG $\alpha, \beta \subseteq \gamma$ and therefore $x, y, z \in \gamma$. Since \in well orders $\gamma, x \in z$. So \in is transitive on $\bigcup A$. It is then strongly

MATH 361

(due Dec 9)

anti-symmetric, since if $x \in y$ and $y \in x$, there are $\alpha, \beta \in A$ such that $a \in \alpha$ and $y \in \beta$. WLOG $\alpha \leq \beta$, $x, y \in \beta$ but \in well orders β , contradiction. A similar argument shows that \in is linear on $\bigcup A$. Let $X \subseteq \bigcup A$ such that $X \neq \emptyset$. Take any $\alpha \in A$ such that $X \cap \alpha \neq \emptyset$ (there exists such α since $X \subseteq \bigcup A$ is nonempty) The $X \cap \alpha$ is a non-empty subset of α and since \in well-orders α , there is $x = \min_{\in}(X \cap \alpha)$. We claim that $x = \min_{\in}(X)$. Let $y \in X$, then $y \in \bigcup A$, then there is β such that $y \in \beta$. If $\beta \leq \alpha$, then $y \in \alpha$ and therefore $y \in X \cap \alpha$ in which case $x \leq y$. Otherwise, $\alpha < \beta$ and then $x, \alpha, y \in \beta$ so x, y are ϵ -comparable if $y \in x$ then $y \in \alpha$ which then imply that $y \in X \cap \alpha$ contradicting the minimality of x. Otherwise, $x \leq y$ as wanted.

and moreover $\bigcup A = \sup(A)$ i.e.:

1. $\bigcup A$ is an upper bound for A, namely, for every $\alpha \in A$, $\alpha \leq \bigcup(A)$.

Solution. If $\alpha \in A$, then $\alpha \subseteq \bigcup A$ and therefore by the lemma we saw in class $\alpha \leq \bigcup A$.

2. If $\beta \in On$ is an upper bound for *A* then $\beta \ge \bigcup A$.

Solution. If β is an upper bound for A, then for every $\alpha \in A$, $\alpha \leq \beta$, namely $\alpha \subseteq \beta$. It follows that $\bigcup A$ is a union of subset β and therefore itself a subset of β . we conclude that $\bigcup A \leq \beta$.

Additional problems

Problem 6. Suppose that $\langle A, <_A \rangle$, $\langle B, <_B \rangle$ are well ordered sets such that $A \cap B = \emptyset$. Define $<_+$ on $A \uplus B$ by $x <_+ y$ if:

Homework 10-Solution

- $x, y \in A$ and $x <_A y$. or
- $x, y \in B$ and $x <_B y$. or
- $x \in A$ and $y \in B$.

Prove that $<_+$ is a well ordering of $A \uplus B$.

Problem 7. Suppose that $\langle A, <_A \rangle$, $\langle B, <_B \rangle$ are well orders. Define the lexicographic order on $A \times B$ as follows:

$$\langle a, b \rangle <_{Lex} \langle a', b' \rangle$$
 iff $a <_A a' \lor (a = a' \land b <_B b')$

Prove that $\langle A \times B, <_{Lex} \rangle$ is a well ordering.

Problem 8. Prove that if α is an ordinal then $\alpha \cup {\alpha}$ is an prdinal.

Problem 9. Prove that if $C \neq \emptyset$ is a set of ordinals then $\bigcap C$ is an ordinal and $\bigcap C = \min_{\in}(C)$.

Problem 10. Prove that if *X* is transitive than P(X) is transitive.