Homework 10-Solution

Problem 1. Suppose that $\left\langle A,<_{A}\right\rangle$ is a well-ordered set. Prove that if f : $A \rightarrow A$ is order-preserving then $f=i d_{A}$.

Solution. Otherwise, let $D=\{x \in A \mid f(x) \neq x\} \neq \emptyset$. Let $x^{*}=\min (D)$. Then for every $x<_{A} x^{*}, f(x)=x$ by minimality of x^{*}. Hence $f\left(x^{*}\right)>_{A} x^{*}$ (otherwise, f is not one-to-one). Since f is an isomorphism, there is $y \in A$ such that $f(y)=x^{*}$. Since $f(y)<_{A} f\left(x^{*}\right)$, then $y<_{A} x^{*}$, but then $x^{*}=$ $f(y)=y$, contradiciton.

Problem 2. Prove that if A is countable the A can be well-ordered.
Instruction: Split into two cases- first prove that every linear strong order on a finite set is a well order. If A is infinitely countable, then by taking any bijection $f: \mathbb{N} \rightarrow A$, we can define $<_{A}$ on A by $a<_{A} b$ if and only if $f^{-1}(a)<f^{-1}(b)$. Prove that $\left\langle A,<_{A}\right\rangle \simeq\langle\mathbb{N},<\rangle$ and deduce that $\left\langle A,\left\langle_{A}\right\rangle\right.$ is a well ordered set.

Solution. Take any injection $f: A \rightarrow \mathbb{N}$, we can define $<_{A}$ on A by $a<_{A} b$ if and only if $f(a)<f(b)$. Then by definition, f is order-preserving and injective. Note that $a<_{A} b<_{A} c$ then $f(a)<f(b)<f(c)$ and therefore $f(a)<f(c)$ so $a<_{A} c$ (namely $<_{A}$ is transitive). If $a<_{A} b$ then $f(a)<f(b)$ so $f(b) \nless f(a)$ and therefore $b \nless A a$. It is linear since for every $a, b \in A$, $f(a), f(b)$ are comparable hence a, b are $<_{A}$-comparable. So far we proved that $<_{A}$ is a strong linear order on A. Let us prove that it is a well order. Let $X \subseteq A$, be a non-empty set. Then $f^{\prime \prime} X \subseteq \mathbb{N}$ is non-empty and therefore there is $n^{*}=\min \left(f^{\prime \prime} X\right)$. Let $x \in X$ be such that $f(x)=n^{*}$, then for every $y \in X, f(y) \geq n^{*}=f(x)$ and therefore $y \geq_{A} x$. It follows that $x=\min _{<A}(X)$.

Homework 10-Solution

Problem 3. Prove that if $\left\langle A,<_{A}\right\rangle$ is a well-ordered set and $X \subseteq A$ is an initial segment (i.e. $\forall x \in X \forall a \in A, a<_{A} x \Rightarrow a \in X$) then either $X=A$ or $\exists a \in A$ such that $X=A_{<A}[a]$.

Hint: If $X \neq A$ let $a=\min _{<_{A}}(A \backslash X)$ (why does it exists?), prove that $X=A_{<A}[a]$.

Solution. If $X=A$ we are done. Otherwise, $X \subsetneq A$, so $A \backslash X \neq \emptyset$. Let $a=\min _{<A}(A \backslash X)$ and let us prove that $A_{<A}[a]=X$ by double inclusion. If $b<_{A} a$, then $b \in A$ and $b \notin A \backslash X$ (otherwise this would contradict the minimality of a) and therefore $b \in X$. If $x \in X$, then x, a are $<_{A}$-comperable. If $a=x$, then $a \in X$, contradiction. If $a<_{A} x$, then $a \in X$ since X is an initial segment. Hence $x<{ }_{A} a$, namely $x \in A_{<A}[a]$.

Problem 4. Prove that the axiom of foundation implies that there is no x such that $x \in x$.

Solution. Suppose otherwise, and let $x \in x$. Define $\{x\}$. By the axiom of foundation there is $y \in\{x\}$ such that $y \cap\{x\}=\emptyset$. But then $y=x$ and $x \in x \cap\{x\}$, contradiction.

Problem 5. Prove that if A is a set of ordinals then $\bigcup A$ is an ordinal

Solution. First let us note that $\bigcup A$ is a transitive set. If $x \in y \in \bigcup A$, then there is $\alpha \in A$ such that $y \in \alpha$. Since α is transitive it follows that $x \in \alpha$ and therefore $x \in \bigcup A$. To see that \in well-orders $\bigcup A$, let $x \in y \in z$ all in $\cup A$, there there are $\alpha, \beta, \gamma \in A$ such that $a \in \alpha, y \in \beta, z \in \gamma$. Since every two ordinals are comparable, WLOG $\alpha, \beta \subseteq \gamma$ and therefore $x, y, z \in \gamma$. Since \in well orders $\gamma, x \in z$. So \in is transitive on $\bigcup A$. It is then strongly

Homework 10-Solution

anti-symmetric, since if $x \in y$ and $y \in x$, there are $\alpha, \beta \in A$ such that $a \in \alpha$ and $y \in \beta$. WLOG $\alpha \leq \beta, x, y \in \beta$ but \in well orders β, contradiction. A similar argument shows that \in is linear on $\bigcup A$. Let $X \subseteq \bigcup A$ such that $X \neq \emptyset$. Take any $\alpha \in A$ such that $X \cap \alpha \neq \emptyset$ (there exists such α since $X \subseteq \bigcup A$ is nonempty) The $X \cap \alpha$ is a non-empty subset of α and since ϵ well-orders α, there is $x=\min _{\in}(X \cap \alpha)$. We claim that $x=\min _{\in}(X)$. Let $y \in X$, then $y \in \cup A$, then there is β such that $y \in \beta$. If $\beta \leq \alpha$, then $y \in \alpha$ and therefore $y \in X \cap \alpha$ in which case $x \leq y$. Otherwise, $\alpha<\beta$ and then $x, \alpha, y \in \beta$ so x, y are \in-comparable if $y \in x$ then $y \in \alpha$ which then imply that $y \in X \cap \alpha$ contradicting the minimality of x. Otherwise, $x \leq y$ as wanted.
and moreover $\bigcup A=\sup (A)$ i.e.:

1. $\cup A$ is an upper bound for A, namely, for every $\alpha \in A, \alpha \leq \bigcup(A)$.

Solution. If $\alpha \in A$, then $\alpha \subseteq \bigcup A$ and therefore by the lemma we saw in class $\alpha \leq \bigcup A$.
2. If $\beta \in O n$ is an upper bound for A then $\beta \geq \bigcup A$.

Solution. If β is an upper bound for A, then for every $\alpha \in A, \alpha \leq \beta$, namely $\alpha \subseteq \beta$. It follows that $\bigcup A$ is a union of subseteq $\mathrm{pf} \beta$ and therefore itself a subset of β. we conclude that $\bigcup A \leq \beta$.

Additional problems

Problem 6. Suppose that $\left\langle A,<_{A}\right\rangle,\left\langle B,<_{B}\right\rangle$ are well ordered sets such that $A \cap B=\emptyset$. Define $<_{+}$on $A \uplus B$ by $x<_{+} y$ if:

Homework 10-Solution

MATH 361

- $x, y \in A$ and $x<_{A} y$. or
- $x, y \in B$ and $x<_{B} y$. or
- $x \in A$ and $y \in B$.

Prove that $<_{+}$is a well ordering of $A \uplus B$.
Problem 7. Suppose that $\left\langle A,{ }_{A}\right\rangle,\left\langle B,{ }_{B}\right\rangle$ are well orders. Define the lexicographic order on $A \times B$ as follows:

$$
\langle a, b\rangle<_{L e x}\left\langle a^{\prime}, b^{\prime}\right\rangle \text { iff } a<_{A} a^{\prime} \vee\left(a=a^{\prime} \wedge b<_{B} b^{\prime}\right)
$$

Prove that $\left\langle A \times B,<_{L e x}\right\rangle$ is a well ordering.
Problem 8. Prove that if α is an ordinal then $\alpha \cup\{\alpha\}$ is an prdinal.
Problem 9. Prove that if $C \neq \emptyset$ is a set of ordinals then $\bigcap C$ is an ordinal and $\cap C=\min _{\epsilon}(C)$.

Problem 10. Prove that if X is transitive than $P(X)$ is transitive.

