Homework 11

MATH 361

We define multiplication of ordinal $\alpha \cdot \beta$ by transfinite induction on β :

- $\alpha \cdot 0=0$.
- $\alpha \cdot(\gamma+1)=(\alpha \cdot \gamma)+\gamma$.
- For limit $\delta, \alpha \cdot \delta=\sup _{\gamma<\delta} \alpha \cdot \gamma$.

Note that we use the transfinite definition of ' + '.

Problem 1. Prove that $2 \cdot \omega=\omega$ and that $\omega \cdot 2=\omega+\omega>\omega$.

Problem 2. Prove by transfinite induction that:

1. $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$.
2. $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$

Problem 3. Suppose that $\left\langle A,<_{A}\right\rangle,\left\langle B,<_{B}\right\rangle$ are well ordered sets such that $A \cap B=\emptyset$. Recall that the definition of $<_{+}$on $A \uplus B$ is $x<_{+} y$ if:

- $x, y \in A$ and $x<_{A} y$. or
- $x, y \in B$ and $x<_{B} y$. or
- $x \in A$ and $y \in B$.

By HW9, this is a well ordering. Prove that if $\operatorname{otp}\left(A,<_{A}\right)=\alpha, \operatorname{otp}\left(B,<_{B}\right.$ $)=\beta$, then $\operatorname{otp}\left(A \uplus B,<_{+}\right)=\alpha+\beta$. [Hint: by transfinite induction on β]

Problem 4. Suppose that $\left\langle A, \angle_{A}\right\rangle,\left\langle B, \angle_{B}\right\rangle$ are well orders. Recall that the lexicographic order on $A \times B$ is defined as follows:

$$
\langle a, b\rangle<_{\text {Lex }}\left\langle a^{\prime}, b^{\prime}\right\rangle \text { iff } a<_{A} a^{\prime} \vee\left(a=a^{\prime} \wedge b<_{B} b^{\prime}\right)
$$

Homework 11

MATH 361

By HW9, this is a well ordering. Suppose that $\operatorname{otp}\left(A,<_{A}\right)=\alpha, \operatorname{otp}\left(B,<_{B}\right.$ $)=\beta$. Prove that $\operatorname{otp}\left(A \times B,<_{L e x}\right)=\beta \cdot \alpha[$ Hint: by transfinite induction on α. Use the previous problem.]

