Problem 1. Prove or disprove the following items:

1. If $f: A \rightarrow B$ is injective, then for every $X \subseteq A, f \upharpoonright X$ is injective.
2. If $f: A \rightarrow B$ is surjective, then for every $X \subseteq A, f \upharpoonright X$ is surjective.

Solution. 1. The statement is true. Proof: Let $f: A \rightarrow B$ be an injective function, and $X \subseteq A$. We want to prove that $f \upharpoonright X$ is injective. So, let $x_{1}, x_{2} \in X$ such that $(f \upharpoonright X)\left(x_{1}\right)=(f \upharpoonright X)\left(x_{2}\right)$. As $\forall x \in X,(f \upharpoonright$ $X)(x)=f(x)$, this is equivalent to proving that $f\left(x_{1}\right)=f\left(x_{2}\right)$. By our assumption, f is injective, so $x_{1}=x_{2}$. Therefore, $(f \upharpoonright X)$ is injective.
2. The statement is false. For example consider the identity function id $_{\{1,2\}}$ and $X=\{1\}$. Then $f \upharpoonright\{1\}$ is not onto $\{1,2\}$.

Problem 2. Prove that if $f: A \rightarrow B$ is a function such that for some $X \subsetneq A$, $f \upharpoonright X: X \rightarrow B$ is onto B, then f is not injective.

Solution. Since $X \subsetneq A$, there is $a \in A \backslash X$. Let $b=f(a) \in B$. Since $f \upharpoonright X$ is surjective, there is $x \in X$ such that $f(x)=b$. Note that $a \neq x$ as $x \in X$ and $a \notin X$, and also $f(a)=b=f(x)$. It follows that f is not injective.

Problem 3. For each of the following functions, determine if it is injective/ surjective and prove your answer for two of the items which are not the first once.

1. $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f_{1}(x)=5 x-x^{2}$.
2. $f_{2}: \mathbb{R} \rightarrow P(\mathbb{R})$, defined by $f_{2}(x)=\left\{x^{2}\right\}$.
3. $f_{3}: P(\mathbb{R}) \rightarrow P(\mathbb{N})$, defined by $f_{3}(x)=x \cap \mathbb{N}$.
4. $f_{4}: P(\mathbb{N}) \rightarrow \mathbb{N}$, defined by $f_{4}(x)=\left\{\begin{array}{ll}\min (x) & 4 \in x \\ 0 & \text { else }\end{array}\right.$.
5. $f_{5}: P(\mathbb{R}) \rightarrow P(\mathbb{N}) \times P(\mathbb{Z}) \times P(\mathbb{Q})$, defined by

$$
f_{5}(X)=\langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q}\rangle
$$

6. $f_{6}: P(\mathbb{N}) \rightarrow P\left(\mathbb{N}_{\text {even }}\right) \times P\left(\mathbb{N}_{\text {odd }}\right)$ defined by $f_{6}(X)=\langle\{2 n \mid n \in$ $X\},\{2 n+1 \mid n \in X\}\rangle$.

Solution. 1. f_{1} is nor injective nor surjective. Proof:
(a) $f_{1}(0)=0=f_{1}(5)$. Clearly $0 \neq 5$, so f_{1} is not injective.
(b) There exists $y \in \mathbb{R}$ such that $\forall x \in \mathbb{R}, f(x) \neq y$. In particular, let $y=8$. The equation $8=5 x-x^{2}$ has no real solution. So, $\forall x \in \mathbb{R}, f(x) \neq 8$. Therefore, f_{1} is not surjective.
2. f_{2} is nor injective nor surjective. Proof:
(a) $f_{2}(1)=\{1\}=f_{2}(-1)$. Clearly $1 \neq-1$, so f_{2} is not injective.
(b) Consider the set $\{1,2\} \subseteq P(\mathbb{R})$. Note that for all $x, f_{2}(x)$ has only one element, but $\{1,2\}$ has two elements. So $\forall x \in \mathbb{R}, f x^{2} \neq\{1,2\}$, and thus f_{2} is not surjective.
3. f_{3} is surjective but not injective. Proof:
(a) $f_{3}(\{1.5\})=\emptyset=f_{3}(\{1.1\})$, but $\{1.5\} \neq\{1.1\}$. Therefore, f_{3} is not injective.
(b) Let $Y \in P(\mathbb{N})$, and $X=Y$. Then $X \subseteq P(\mathbb{R})$, and $f_{3}(X)=X \cap \mathbb{N}=X$. Therefore, f_{3} is surjective.
4. f_{4} is not injective or surjective. Proof:
(a) $f_{4}(\{1\})=0=f_{4}(\{2\})$, but $\{1\} \neq\{2\}$. Therefore, f_{4} is not injective.
(b) Let y be a natural number greater than 4 , and let $X \subseteq \mathbb{N}$. Cases:
i. $4 \in X$. Then $\min (X) \leq 4$, and so $f_{4}(X)<y$.
ii. $4 \notin X$. Then $f_{4}(X)=0 \neq y$.

Therefore, f_{4} is not surjective.
5. f_{5} is nor injective nor surjective. Proof:
(a) $f_{5}(\{\pi\})=<\emptyset, \emptyset, \emptyset>=f_{5}(\{\sqrt{2}\})$, but $\{\pi\} \neq\{\sqrt{2}\}$. Therefore, f_{5} is not injective.
(b) Let $Y=<\{1\},\{-1\},\left\{\frac{1}{2}\right\}>$. Towards a contradiction, suppose f_{5} is surjective. Then there exists some $X \in P(\mathbb{R})$ such that $f_{5}(X)=Y$. By the definition of f, for some $N \subseteq \mathbb{N}, X \cap \mathbb{N}=\{1\}$. Thus, $1 \in X$. However, for some $Z \subseteq \mathbb{Z}, X \cap \mathbb{Z}=\{-1\}$. Thus, $1 \notin \mathbb{Z}$, which is a contradiction. Therefore, for all $X \in P(\mathbb{R}), f_{5}(X) \neq Y$, so f_{5} is not surjective.
6. f_{6} is injective and not surjective. Proof:
(a) Let $X_{1}, X_{2} \in P(\mathbb{N})$. Suppose that $X_{1} \neq X_{2}$ and let us prove that $f\left(X_{1}\right) \neq f\left(X_{2}\right)$. By our assumption, there is $x \in X_{1} \backslash X_{2}$ or there is $x \in X_{2} \backslash X_{2}$. Since the two cases are symmetric, let us assume without loss of generality that $x \in X_{1} \backslash X_{2}$. Then $2 x \in\left\{2 n \mid n \in X_{1}\right\}$. However $2 x \notin\left\{2 n \mid n \in X_{2}\right\}$, just otherwise, $2 x=2 n$ for some $n \in X_{2}$ which implies that $x=n \in X_{2}$, contradicting the choice of x.

It follows that $\left\{2 n \mid n \in X_{1}\right\} \neq\left\{2 n \mid n \in X_{2}\right\}$ and therefore
$f_{6}\left(X_{1}\right)=\left\langle\left\{2 n \mid n \in X_{1}\right\},\left\{2 n+1 \mid n \in X_{1}\right\}\right\rangle \neq\left\langle\left\{2 n \mid n \in X_{2}\right\},\left\{2 n+1 \mid n \in X_{2}\right\}\right\rangle=f_{6}\left(X_{2}\right)$
(b) Let $Y=\langle\{0\}, \emptyset\rangle \in P\left(\mathbb{N}_{\text {even }}\right) \times P\left(\mathbb{N}_{\text {odd }}\right)$. Suppose towards a contra-
diction that there is $X \in P(\mathbb{N})$ such that

$$
(*) f_{6}(X)=\langle\{2 n \mid n \in X\},\{2 n+1 \mid n \in X\}\rangle=\langle\{0\}, \emptyset\rangle .
$$

Then $\{2 n \mid n \in X\}=\{0\}$. It follows that $0 \in X$ and therefore $1 \in\{2 n+1 \mid n \in X\}$. In particular $\{2 n+1 \mid n \in X\} \neq \emptyset$ contradicting the equality of the pair (*).

Problem 4. For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of C by f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

(a) Prove that if $f: A \rightarrow B$ is a function and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \subseteq f^{\prime \prime}[A \backslash C]
$$

(b) Give an example of a function $f: A \rightarrow B$ and a subset $C \subseteq A$ such that $\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \neq f^{\prime \prime}[A \backslash C]$.
(c) Prove that if $f: A \rightarrow B$ is an injection and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C] .
$$

Solution. (a) Let $b \in f^{\prime \prime} A \backslash f^{\prime \prime} C$. Since $b \in f^{\prime \prime} A$, there is $a \in A$ such that $b=f(a)$. Since $b \notin f^{\prime \prime} C, a \notin C$. It follows that $a \in A \backslash C$. We conclude that $b=f(a) \in f^{\prime \prime}[A \backslash C]$.
(b) Let $f:\{1,2\} \rightarrow\{1,2\}$ defined by $f(1)=f(2)=1$. Let $A=\{1,2\}$, and $C=\{1\}$. Then

$$
f^{\prime \prime}\{1,2\}=\{1\}, f^{\prime \prime}\{1\}=\{1\} \Rightarrow f^{\prime \prime}\{1,2\} \backslash f^{\prime \prime}\{1\}=\emptyset
$$

Also

$$
\{1,2\} \backslash\{1\}=\{2\} \Rightarrow f^{\prime \prime}[\{1,2\} \backslash\{1\}]=\{1\}
$$

Hence

$$
f^{\prime \prime}\{1,2\} \backslash f^{\prime \prime}\{1\}=\neq\{1\}=f^{\prime \prime}[\{1,2\} \backslash\{1\}]
$$

(c) Suppose that f is injective and we would like to prove that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C]
$$

By a double inclusion. In section (a) we proved \subseteq. For the other direction, let $x \in f^{\prime \prime}[A \backslash C]$. Then there is $a \in A \backslash C$ such that $f(a)=x$. By the definition of difference, we would like to prove that $x \in f^{\prime \prime} A$ and $x \notin f^{\prime \prime} C$. Since $a \in A$, it follows that $x=f(a) \in f^{\prime \prime} A$. Suppose towards a contradiction that there is $c \in C$ such that $f(c)=x$. Then $f(c)=f(a)$. Since f is injective, $c=a$. However $c \in C$ and $a \notin C$, contradiction. Hence $x \in f^{\prime \prime} C$.

Additional Problems

Problem 5. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be function. Prove the following items:

1. If f, g are injective then $g \circ f$ is injective.
2. If f, g are surjective, then $g \circ f$.

Solution. 1. Suppose f, g are injective functions. We want to show that $g \circ f$ is injective. So, let $x_{1}, x_{2} \in A$ such that $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. By definition, $(g \circ f)(x)=g(f(x))$. So this is equivalent to $g\left(f\left(x_{1}\right)\right)=$ $g\left(f\left(x_{2}\right)\right)$. We want to show that $x_{1}=x_{2}$. By our assumption, g is injective, and thus $f\left(x_{1}\right)=f\left(x_{2}\right)$. Similarly, f is injective, and so we have $x_{1}=x_{2}$ Therefore, $g \circ f$ is injective.
2. Suppose f, g are surjective functions. We want to show that $g \circ f$ is surjective. So, let $c \in C$. We want to show that there exists $a \in A$ such that $c=(g \circ f)(a)$. Because g is surjective, there exists $b \in B$ such that $c=g(b)$. Similarly, f is surjective, and so there exists $a \in A$ such that $b=f(a)$. Thus, we have $c=g(b)=g(f(a)$, which is equivalent to $c=(g \circ f)(a)$. Therefore, $g \circ f$ is surjective.

Problem 6. Prove that the following functions are invertible and find their inverse:

1. $h:(0, \infty) \rightarrow(0,1)$ defined by $h(x)=\frac{1}{1+x^{2}}$
2. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=\left\{\begin{array}{ll}n+1 & n \in \mathbb{N}_{\text {even }} \\ n-1 & n \in \mathbb{N}_{\text {odd }}\end{array}\right.$.
3. $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $g(\langle n, m\rangle)=\langle n, n+m\rangle$

Solution. 1. We want to show that h is invertible. This is equivalent to showing that f is both injective and surjective.

We will first prove that h is injective. Let $x_{1}, x_{2} \in(0, \infty)$ such that $h\left(x_{1}\right)=$ $h\left(x_{2}\right)$. We want to show that $x_{1}=x_{2}$. By definition, then, $\frac{1}{1+x_{1}{ }^{2}}=\frac{1}{1+x_{2}{ }^{2}}$.

Standard reduction of this equation implies that $x_{1}{ }^{2}=x_{2}{ }^{2}$. Since $x_{1}, x_{2}>0$, it follows that $x_{1}=x_{2}$. Therefore, h is injective.

We will now show that h is surjective. Let $y \in(0,1)$. We will show that there exists some $x \in(0, \infty)$ such that $y=h(x)$. Equivalently, we want x such that $y=\frac{1}{1+x^{2}}$. So, let $x=\sqrt{\frac{1}{y}-1}$. Note that since $y \in(0,1)$, $\frac{1}{y}-1>0$ and therefore x is a real number in $(0, \infty)$. It follows that $f(x)=\frac{1}{1+\sqrt{\frac{1}{y}-1}^{2}}=\frac{1}{\frac{1}{y}}=y$. So h is surjective.
Therefore, h is invertible.
Inverse: $h^{-1}:(0,1) \rightarrow(0, \infty), h^{-1}(y)=\sqrt{\frac{1}{y}-1}$
2. We will show that f is both injective and surjective.

We will first prove that f is injective. Let $n_{1}, n_{2} \in \mathbb{N}$ such that $f\left(n_{1}\right)=$ $f\left(n_{2}\right)$. We want to prove that $n_{1}=n_{2}$. Let us split into cases:
(a) If $n_{1}, n_{2} \in \mathbb{N}_{\text {even }}$, then $f\left(n_{1}\right)=n_{1}+1$ and $f\left(n_{2}\right)=n_{2}+1$. It follows that $n_{1}+1=n_{2}+1$ hence $n_{1}=n_{2}$.
(b) If $n_{1}, n_{2} \in \mathbb{N}_{\text {odd }}$, then $f\left(n_{1}\right)=n_{1}-1$ and $f\left(n_{2}\right)=n_{2}-1$. It follows that $n_{1}-1=n_{2}-1$ hence $n_{1}=n_{2}$.
(c) If $n_{1} \in \mathbb{N}_{\text {even }}$ and $n_{2} \in \mathbb{N}_{\text {odd }}$, then $f\left(n_{1}\right)=n_{1}+1$ is odd and $f\left(n_{2}\right)=n_{2}-1$ is even and in particular $f\left(n_{1}\right) \neq f\left(n_{2}\right)$, contradicting our assumption. Hence this case is impossible.
(d) The $n_{1} \in \mathbb{N}_{\text {odd }}$ and $n_{2} \in \mathbb{N}_{\text {even }}$, is similar to the one above.

We will now prove that f is surjective. Let $m \in \mathbb{N}$. We will show that there is some $n \in \mathbb{N}$ such that $m=f(n)$. Cases:
(a) m is even. Let $n=m+1$. Then $f(n)=m+1-1=m$.
(b) m is odd. Let $n=m-1$. Then $f(n)=m-1+1=m$.

Therefore, f is surjective, and so f is invertible.
Inverse: $f^{-1}: \mathbb{N} \rightarrow \mathbb{N}, f^{-1}(m)=$

$$
\begin{cases}m+1 & m \in \mathbb{N}_{\text {odd }} \\ m-1 & m \in \mathbb{N}_{\text {even }}\end{cases}
$$

3. We will first show that g is injective. Let $\left\langle n_{1}, m_{1}>,<n_{2}, m_{2}>\in\right.$ $\mathbb{Z} \times \mathbb{Z}$ such that $g\left(<n_{1}, m_{1}>\right)=g\left(<n_{2}, m_{2}>\right)$. We want to show that $<n_{1}, m_{1}>=<n_{2}, m_{2}>$. Equivalently we need to show that $n_{1}=n_{2}$ and $m_{1}=m_{2}$. By our assumption, we have that $<n_{1}, n_{1}+m_{1}>=<$ $n_{2}, n_{2}+m_{2}>$. The properties of pairs show us that $n_{1}=n_{2}$. Further, $n_{1}+m_{1}=n_{2}+m_{2}$, and so $m_{1}=m_{2}$. Thus, $\left\langle n_{1}, m_{1}\right\rangle=<n_{2}, m_{2}>$, and so g is injective.

We will now show that g is surjective. Let $\langle r, s>\in \mathbb{Z} \times \mathbb{Z}$. We want to show that there exists $\langle n, m\rangle \in \mathbb{Z} \times \mathbb{Z}$ such that $g(\langle n, m\rangle)=\langle r, s\rangle$. So let $n=r, m=s-r$. Then $g(\langle n, m\rangle)=\langle r, s-r+r\rangle=\langle r, s\rangle$. Therefore, g is surjective, and thus g is invertible.

Inverse: $g^{-1}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}, g^{-1}(\langle r, s\rangle)=\langle r, s-r\rangle$
Problem 7. Define

$$
\begin{gathered}
f_{1}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, \quad f_{1}(n)=\langle n+1, n+2\rangle \\
f_{2}: \mathbb{N} \rightarrow \mathbb{N}, f_{2}(n)=n^{2}
\end{gathered}
$$

$$
\begin{gathered}
f_{3}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}, \quad f_{3}(\langle n, m\rangle)=n-m \\
f_{4}: \mathbb{N} \rightarrow \mathbb{N}, \quad f_{4}(n)=n+1
\end{gathered}
$$

Determine if the following compositions are defined and compute them:

1. $f_{1} \circ f_{2}$ and $f_{2} \circ f_{1}$.
2. $f_{2} \circ f_{2}$. and $f_{3} \circ f_{3}$
3. $f_{4} \circ f_{2}$ and $f_{2} \circ f_{4}$.
4. $f_{3} \circ f_{1} \circ f_{2}$ and $f_{4} \circ f_{3} \circ f_{2}$.

Solution. 1. $f_{1} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N},\left(f_{1} \circ f_{2}\right)(n)=<n^{2}+1, n^{2}+2>$ $f_{2} \circ f_{1}$ is undefined.
2. $f_{2} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{N},\left(f_{2} \circ f_{2}\right)(n)=n^{4}$
$f_{3} \circ f_{3}$ is undefined.
3. $f_{4} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{N},\left(f_{4} \circ f_{2}\right)(n)=n^{2}+1$
$f_{2} \circ f_{4}: \mathbb{N} \rightarrow \mathbb{N},\left(f_{2} \circ f_{4}\right)(n)=(n+1)^{2}$
4. $f_{3} \circ f_{1} \circ f_{2}: \mathbb{N} \rightarrow \mathbb{Z},\left(f_{3} \circ f_{1} \circ f_{2}\right)(n)=-1$
$\left(f_{4} \circ f_{3} \circ f_{2}\right)(n)$ is undefined
Problem 8. Let $A, B \neq \emptyset$ be any set and let $f: A \rightarrow B$ be a function. Define a new function using f, as follows, $F: P(A) \rightarrow P(B)$ defined by $F(X)=f^{\prime \prime} X$. Prove that f is invertible if and only if F is invertible.

Solution. We want to prove that f is invertible if and only if F is invertible. We will prove this by double implication.

First, suppose f is invertible. We want to prove that F is invertible. We will therefore show that F is a bijection.

1. We will first show that F is injective. Let $X_{1}, X_{2} \in P(A)$ such that $F\left(X_{1}\right)=$ $F\left(X_{2}\right)$. Equivalently, $\left\{f(x) \mid x \in X_{1}\right\}=\left\{f(x) \mid x \in X_{2}\right\}$. We want to show that $X_{1}=X_{2}$. So let $x_{1} \in X_{1}$. We want to show that $x_{1} \in X_{2}$. Denote by $y=f\left(X_{1}\right)$, then by the replacement principle, there exists $y \in F\left(X_{1}\right)$. Since $F\left(X_{1}\right)=F\left(X_{2}\right), y \in F\left(X_{2}\right)$ and therefore, by the replacement principle, there is $x_{2} \in X_{2}$ such that $y=f\left(x_{2}\right)$. We conclude that $f\left(x_{2}\right)=y=f\left(x_{1}\right)$. Since f is injective, $x_{1}=x_{2}$. So, $x_{1} \in X_{2}$ and thus $X_{1} \subseteq X_{2}$. The inclusion $X_{2} X_{1}$ is symmetric. We conclude that $X_{1}=X_{2}$ and therefore, f is injective.
2. We will now show that F is surjective. Let $Y \in P(B)$. Then $Y \subseteq B$. We want to show that $Y=F(X)$ for some $X \subseteq A$. Let $X=\{x \in A \mid f(x) \in Y\}$ and let us prove set equality $F(X)=Y$. Let $y \in Y$, since f is surjective, there exists $x \in A$ such that $f(x)=y$. Since $y \in Y, x \in X$ and therefore $y=f(x) \in f^{\prime \prime} X=f(X)$. For the other direction, let $y \in F(X)$. Then there is $x \in X$ such that $f(x)=y$. By definition of $x, y=f(x) \in Y$. Hence $F(X)=Y$ and therefore F is surjective. So F is a bijection, and therefore F is invertible.

Therefore, if f is invertible, then F is invertible.
Now suppose that F is invertible. We will show that f is a bijection.

1. We will first show that f is injective. Let $x_{1}, x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. We want to show that $x_{1}=x_{2}$. Let $X_{1}=\left\{x_{1}\right\}, X_{2}=\left\{x_{2}\right\}$. Then
$F\left(X_{1}\right)=\left\{f\left(x_{1}\right)\right\}, F\left(X_{2}\right)=\left\{f\left(x_{2}\right)\right\}$. As F is injective, it follows that $X_{1}=X_{2}$, and thus $x_{1}=x_{2}$. Therefore, f is injective.
2. We will now show that f is surjective. Let $y \in B$. We want to show that there exists $x \in A$ such that $y=f(x)$. Let $Y=\{y\}$. Then $Y \in P(B)$. Because F is surjective, there exists X such that $Y=F(X)$. Equivalently, $\{y\}=\{f(x) \mid x \in X\}$. By the replacement principle and set equality, we have that $y=f(x)$ for some $x \in A$. Therefore, f is surjective. Thus, f is a bijection, and therefore f is invertible.

Thus, if F is invertible, then f is invertible.
Therefore, f is invertible if and only if F is invertible.

