Problem 1. Prove or disprove the following items:

- 1. If $f : A \to B$ is injective, then for every $X \subseteq A$, $f \upharpoonright X$ is injective.
- 2. If $f : A \to B$ is surjective, then for every $X \subseteq A$, $f \upharpoonright X$ is surjective.
- **Solution.** 1. The statement is true. Proof: Let $f : A \to B$ be an injective function, and $X \subseteq A$. We want to prove that $f \upharpoonright X$ is injective. So, let $x_1, x_2 \in X$ such that $(f \upharpoonright X)(x_1) = (f \upharpoonright X)(x_2)$. As $\forall x \in X, (f \upharpoonright X)(x) = f(x)$, this is equivalent to proving that $f(x_1) = f(x_2)$. By our assumption, f is injective, so $x_1 = x_2$. Therefore, $(f \upharpoonright X)$ is injective.
 - 2. The statement is false. For example consider the identity function $id_{\{1,2\}}$ and $X = \{1\}$. Then $f \upharpoonright \{1\}$ is not onto $\{1,2\}$.

Problem 2. Prove that if $f : A \to B$ is a function such that for some $X \subsetneq A$, $f \upharpoonright X : X \to B$ is onto *B*, then *f* is not injective.

Solution. Since $X \subsetneq A$, there is $a \in A \setminus X$. Let $b = f(a) \in B$. Since $f \upharpoonright X$ is surjective, there is $x \in X$ such that f(x) = b. Note that $a \neq x$ as $x \in X$ and $a \notin X$, and also f(a) = b = f(x). It follows that f is not injective.

Problem 3. For each of the following functions, determine if it is injective/ surjective and prove your answer for two of the items which are not the first once.

- 1. $f_1 : \mathbb{R} \to \mathbb{R}$, defined by $f_1(x) = 5x x^2$.
- 2. $f_2 : \mathbb{R} \to P(\mathbb{R})$, defined by $f_2(x) = \{x^2\}$.
- 3. $f_3 : P(\mathbb{R}) \to P(\mathbb{N})$, defined by $f_3(x) = x \cap \mathbb{N}$.

Homework 2

- 4. $f_4: P(\mathbb{N}) \to \mathbb{N}$, defined by $f_4(x) = \begin{cases} \min(x) & 4 \in x \\ 0 & else \end{cases}$.
- 5. $f_5: P(\mathbb{R}) \to P(\mathbb{N}) \times P(\mathbb{Z}) \times P(\mathbb{Q})$, defined by

$$f_5(X) = \langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q} \rangle$$

6. $f_6 : P(\mathbb{N}) \to P(\mathbb{N}_{even}) \times P(\mathbb{N}_{odd})$ defined by $f_6(X) = \langle \{2n \mid n \in X\}, \{2n+1 \mid n \in X\} \rangle$.

Solution. 1. *f*₁ *is nor injective nor surjective. Proof:*

- (a) $f_1(0) = 0 = f_1(5)$. Clearly $0 \neq 5$, so f_1 is not injective.
- (b) There exists $y \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, $f(x) \neq y$. In particular, let y = 8. The equation $8 = 5x - x^2$ has no real solution. So, $\forall x \in \mathbb{R}$, $f(x) \neq 8$. Therefore, f_1 is not surjective.
- 2. *f*₂ is nor injective nor surjective. Proof:
 - (a) $f_2(1) = \{1\} = f_2(-1)$. Clearly $1 \neq -1$, so f_2 is not injective.
 - (b) Consider the set $\{1,2\} \subseteq P(\mathbb{R})$. Note that for all $x, f_2(x)$ has only one element, but $\{1,2\}$ has two elements. So $\forall x \in \mathbb{R}, fx^2 \neq \{1,2\}$, and thus f_2 is not surjective.
- *3. f*³ *is surjective but not injective. Proof:*
 - (a) $f_3(\{1.5\}) = \emptyset = f_3(\{1.1\})$, but $\{1.5\} \neq \{1.1\}$. Therefore, f_3 is not injective.
 - (b) Let $Y \in P(\mathbb{N})$, and X = Y. Then $X \subseteq P(\mathbb{R})$, and $f_3(X) = X \cap \mathbb{N} = X$. Therefore, f_3 is surjective.

2023

- *4. f*⁴ *is not injective or surjective. Proof:*
 - (a) $f_4(\{1\}) = 0 = f_4(\{2\})$, but $\{1\} \neq \{2\}$. Therefore, f_4 is not injective.
 - (b) Let y be a natural number greater than 4, and let $X \subseteq \mathbb{N}$. Cases:
 - *i.* $4 \in X$. Then min(X) ≤ 4 , and so $f_4(X) < y$.
 - *ii.* $4 \notin X$. Then $f_4(X) = 0 \neq y$.

Therefore, f_4 is not surjective.

- 5. f_5 is nor injective nor surjective. Proof:
 - (a) $f_5({\pi}) = \langle \emptyset, \emptyset, \emptyset \rangle = f_5({\sqrt{2}})$, but ${\pi} \neq {\sqrt{2}}$. Therefore, f_5 is not injective.
 - (b) Let Y =< {1}, {-1}, {1/2} >. Towards a contradiction, suppose f₅ is surjective. Then there exists some X ∈ P(ℝ) such that f₅(X) = Y. By the definition of f, for some N ⊆ ℕ, X ∩ ℕ = {1}. Thus, 1 ∈ X. However, for some Z ⊆ ℤ, X ∩ ℤ = {-1}. Thus, 1 ∉ ℤ, which is a contradiction. Therefore, for all X ∈ P(ℝ), f₅(X) ≠ Y, so f₅ is not surjective.
- 6. *f*⁶ *is injective and not surjective. Proof:*
 - (a) Let X₁, X₂ ∈ P(N). Suppose that X₁ ≠ X₂ and let us prove that f(X₁) ≠ f(X₂). By our assumption, there is x ∈ X₁ \ X₂ or there is x ∈ X₂ \ X₂. Since the two cases are symmetric, let us assume without loss of generality that x ∈ X₁ \ X₂. Then 2x ∈ {2n | n ∈ X₁}. However 2x ∉ {2n | n ∈ X₂}, just otherwise, 2x = 2n for some n ∈ X₂ which implies that x = n ∈ X₂, contradicting the choice of x.

2023

It follows that $\{2n \mid n \in X_1\} \neq \{2n \mid n \in X_2\}$ *and therefore*

 $f_6(X_1) = \langle \{2n \mid n \in X_1\}, \{2n+1 \mid n \in X_1\} \rangle \neq \langle \{2n \mid n \in X_2\}, \{2n+1 \mid n \in X_2\} \rangle = f_6(X_2)$

(b) Let $Y = \langle \{0\}, \emptyset \rangle \in P(\mathbb{N}_{even}) \times P(\mathbb{N}_{odd})$. Suppose towards a contradiction that there is $X \in P(\mathbb{N})$ such that

(*) $f_6(X) = \langle \{2n \mid n \in X\}, \{2n+1 \mid n \in X\} \rangle = \langle \{0\}, \emptyset \rangle.$

Then $\{2n \mid n \in X\} = \{0\}$. It follows that $0 \in X$ and therefore $1 \in \{2n + 1 \mid n \in X\}$. In particular $\{2n + 1 \mid n \in X\} \neq \emptyset$ contradicting the equality of the pair (*).

Problem 4. For a function $f : A \rightarrow B$ and $C \subseteq A$ define the *pointwise image* of *C* by *f* as

$$f''C = \{f(c) \mid c \in C\}$$

(a) Prove that if $f : A \to B$ is a function and $C \subseteq A$, then

$$(f''A) \setminus (f''C) \subseteq f''[A \setminus C].$$

(b) Give an example of a function $f : A \rightarrow B$ and a subset $C \subseteq A$ such that

$$(f''A) \setminus (f''C) \neq f''[A \setminus C].$$

(c) Prove that if $f : A \rightarrow B$ is an injection and $C \subseteq A$, then

$$(f''A) \setminus (f''C) = f''[A \setminus C].$$

Solution. (a) Let $b \in f''A \setminus f''C$. Since $b \in f''A$, there is $a \in A$ such that b = f(a). Since $b \notin f''C$, $a \notin C$. It follows that $a \in A \setminus C$. We conclude that $b = f(a) \in f''[A \setminus C]$.

(b) Let $f : \{1,2\} \rightarrow \{1,2\}$ defined by f(1) = f(2) = 1. Let $A = \{1,2\}$, and $C = \{1\}$. Then

$$f''\{1,2\} = \{1\}, \ f''\{1\} = \{1\} \Longrightarrow f''\{1,2\} \setminus f''\{1\} = \emptyset$$

Also

$$\{1,2\}\setminus\{1\}=\{2\}\Rightarrow f''[\{1,2\}\setminus\{1\}]=\{1\}$$

Hence

$$f''\{1,2\} \setminus f''\{1\} = \neq \{1\} = f''[\{1,2\} \setminus \{1\}]$$

(c) Suppose that f is injective and we would like to prove that

$$(f''A) \setminus (f''C) = f''[A \setminus C].$$

By a double inclusion. In section (a) we proved \subseteq . For the other direction, let $x \in f''[A \setminus C]$. Then there is $a \in A \setminus C$ such that f(a) = x. By the definition of difference, we would like to prove that $x \in f''A$ and $x \notin f''C$. Since $a \in A$, it follows that $x = f(a) \in f''A$. Suppose towards a contradiction that there is $c \in C$ such that f(c) = x. Then f(c) = f(a). Since f is injective, c = a. However $c \in C$ and $a \notin C$, contradiction. Hence $x \in f''C$.

Additional Problems

Problem 5. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be function. Prove the following items:

- 1. If *f* , *g* are injective then $g \circ f$ is injective.
- 2. If f, g are surjective, then $g \circ f$.

- **Solution.** 1. Suppose f, g are injective functions. We want to show that $g \circ f$ is injective. So, let $x_1, x_2 \in A$ such that $(g \circ f)(x_1) = (g \circ f)(x_2)$. By definition, $(g \circ f)(x) = g(f(x))$. So this is equivalent to $g(f(x_1)) = g(f(x_2))$. We want to show that $x_1 = x_2$. By our assumption, g is injective, and thus $f(x_1) = f(x_2)$. Similarly, f is injective, and so we have $x_1 = x_2$. Therefore, $g \circ f$ is injective.
 - 2. Suppose f, g are surjective functions. We want to show that $g \circ f$ is surjective. So, let $c \in C$. We want to show that there exists $a \in A$ such that $c = (g \circ f)(a)$. Because g is surjective, there exists $b \in B$ such that c = g(b). Similarly, f is surjective, and so there exists $a \in A$ such that b = f(a). Thus, we have c = g(b) = g(f(a)), which is equivalent to $c = (g \circ f)(a)$. Therefore, $g \circ f$ is surjective.

Problem 6. Prove that the following functions are invertible and find their inverse:

1.
$$h: (0, \infty) \to (0, 1)$$
 defined by $h(x) = \frac{1}{1+x^2}$
2. $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = \begin{cases} n+1 & n \in \mathbb{N}_{even} \\ n-1 & n \in \mathbb{N}_{odd} \end{cases}$

3. $g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by $g(\langle n, m \rangle) = \langle n, n + m \rangle$

Solution. 1. We want to show that h is invertible. This is equivalent to showing that f is both injective and surjective. We will first prove that h is injective. Let $x_1, x_2 \in (0, \infty)$ such that $h(x_1) = h(x_2)$. We want to show that $x_1 = x_2$. By definition, then, $\frac{1}{1+x_1^2} = \frac{1}{1+x_2^2}$. Standard reduction of this equation implies that $x_1^2 = x_2^2$. Since $x_1, x_2 > 0$, it follows that $x_1 = x_2$. Therefore, h is injective.

We will now show that h is surjective. Let $y \in (0, 1)$. We will show that there exists some $x \in (0, \infty)$ such that y = h(x). Equivalently, we want x such that $y = \frac{1}{1+x^2}$. So, let $x = \sqrt{\frac{1}{y} - 1}$. Note that since $y \in (0, 1)$, $\frac{1}{y} - 1 > 0$ and therefore x is a real number in $(0, \infty)$. It follows that $f(x) = \frac{1}{1+\sqrt{\frac{1}{y}-1}^2} = \frac{1}{\frac{1}{y}} = y$. So h is surjective.

Therefore, h is invertible.

Inverse: $h^{-1}: (0,1) \to (0,\infty), h^{-1}(y) = \sqrt{\frac{1}{y} - 1}$

2. We will show that *f* is both injective and surjective.

We will first prove that f is injective. Let $n_1, n_2 \in \mathbb{N}$ such that $f(n_1) = f(n_2)$. We want to prove that $n_1 = n_2$. Let us split into cases:

- (a) If $n_1, n_2 \in \mathbb{N}_{even}$, then $f(n_1) = n_1 + 1$ and $f(n_2) = n_2 + 1$. It follows that $n_1 + 1 = n_2 + 1$ hence $n_1 = n_2$.
- (b) If $n_1, n_2 \in \mathbb{N}_{odd}$, then $f(n_1) = n_1 1$ and $f(n_2) = n_2 1$. It follows that $n_1 1 = n_2 1$ hence $n_1 = n_2$.
- (c) If $n_1 \in \mathbb{N}_{even}$ and $n_2 \in \mathbb{N}_{odd}$, then $f(n_1) = n_1 + 1$ is odd and $f(n_2) = n_2 1$ is even and in particular $f(n_1) \neq f(n_2)$, contradicting our assumption. Hence this case is impossible.
- (d) The $n_1 \in \mathbb{N}_{odd}$ and $n_2 \in \mathbb{N}_{even}$, is similar to the one above.

We will now prove that f is surjective. Let $m \in \mathbb{N}$. We will show that there is some $n \in \mathbb{N}$ such that m = f(n). Cases:

Homework 2

- (a) *m* is even. Let n = m + 1. Then f(n) = m + 1 1 = m.
- (b) *m* is odd. Let n = m 1. Then f(n) = m 1 + 1 = m.

Therefore, f is surjective, and so f is invertible.

Inverse: $f^{-1} : \mathbb{N} \to \mathbb{N}, f^{-1}(m) =$

$$\begin{cases} m+1 & m \in \mathbb{N}_{odd} \\ m-1 & m \in \mathbb{N}_{even} \end{cases}$$

3. We will first show that g is injective. Let $\langle n_1, m_1 \rangle, \langle n_2, m_2 \rangle \in \mathbb{Z} \times \mathbb{Z}$ such that $g(\langle n_1, m_1 \rangle) = g(\langle n_2, m_2 \rangle)$. We want to show that $\langle n_1, m_1 \rangle = \langle n_2, m_2 \rangle$. Equivalently we need to show that $n_1 = n_2$ and $m_1 = m_2$. By our assumption, we have that $\langle n_1, n_1 + m_1 \rangle = \langle n_2, n_2 + m_2 \rangle$. The properties of pairs show us that $n_1 = n_2$. Further, $n_1 + m_1 = n_2 + m_2$, and so $m_1 = m_2$. Thus, $\langle n_1, m_1 \rangle = \langle n_2, m_2 \rangle$, and so g is injective.

We will now show that g is surjective. Let $\langle r, s \rangle \in \mathbb{Z} \times \mathbb{Z}$. We want to show that there exists $\langle n, m \rangle \in \mathbb{Z} \times \mathbb{Z}$ such that $g(\langle n, m \rangle) = \langle r, s \rangle$. So let n = r, m = s - r. Then $g(\langle n, m \rangle) = \langle r, s - r + r \rangle = \langle r, s \rangle$. Therefore, g is surjective, and thus g is invertible.

Inverse: $g^{-1} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, g^{-1}(\langle r, s \rangle) = \langle r, s - r \rangle$

Problem 7. Define

$$f_1 : \mathbb{N} \to \mathbb{N} \times \mathbb{N}, \ f_1(n) = \langle n+1, n+2 \rangle$$

 $f_2 : \mathbb{N} \to \mathbb{N}, \ f_2(n) = n^2$

2023

Homework 2

$$f_3: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}, \ f_3(\langle n, m \rangle) = n - m$$

 $f_4: \mathbb{N} \to \mathbb{N}, \ f_4(n) = n + 1$

Determine if the following compositions are defined and compute them:

- 1. $f_1 \circ f_2$ and $f_2 \circ f_1$.
- 2. $f_2 \circ f_2$. and $f_3 \circ f_3$
- 3. $f_4 \circ f_2$ and $f_2 \circ f_4$.
- 4. $f_3 \circ f_1 \circ f_2$ and $f_4 \circ f_3 \circ f_2$.

Solution. 1. $f_1 \circ f_2 : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, $(f_1 \circ f_2)(n) = \langle n^2 + 1, n^2 + 2 \rangle$ $f_2 \circ f_1$ is undefined.

- 2. $f_2 \circ f_2 : \mathbb{N} \to \mathbb{N}, (f_2 \circ f_2)(n) = n^4$ $f_3 \circ f_3 \text{ is undefined.}$
- 3. $f_4 \circ f_2 : \mathbb{N} \to \mathbb{N}, (f_4 \circ f_2)(n) = n^2 + 1$ $f_2 \circ f_4 : \mathbb{N} \to \mathbb{N}, (f_2 \circ f_4)(n) = (n+1)^2$
- 4. $f_3 \circ f_1 \circ f_2 : \mathbb{N} \to \mathbb{Z}, (f_3 \circ f_1 \circ f_2)(n) = -1$
 - $(f_4 \circ f_3 \circ f_2)(n)$ is undefined

Problem 8. Let $A, B \neq \emptyset$ be any set and let $f : A \rightarrow B$ be a function. Define a new function using f, as follows, $F : P(A) \rightarrow P(B)$ defined by F(X) = f''X. Prove that f is invertible if and only if F is invertible.

Solution. We want to prove that *f* is invertible if and only if *F* is invertible. We will prove this by double implication.

First, suppose f is invertible. We want to prove that F is invertible. We will therefore show that F is a bijection.

- 1. We will first show that F is injective. Let $X_1, X_2 \in P(A)$ such that $F(X_1) = F(X_2)$. Equivalently, $\{f(x)|x \in X_1\} = \{f(x)|x \in X_2\}$. We want to show that $X_1 = X_2$. So let $x_1 \in X_1$. We want to show that $x_1 \in X_2$. Denote by $y = f(X_1)$, then by the replacement principle, there exists $y \in F(X_1)$. Since $F(X_1) = F(X_2), y \in F(X_2)$ and therefore, by the replacement principle, there is $x_2 \in X_2$ such that $y = f(x_2)$. We conclude that $f(x_2) = y = f(x_1)$. Since f is injective, $x_1 = x_2$. So, $x_1 \in X_2$ and thus $X_1 \subseteq X_2$. The inclusion X_2X_1 is symmetric. We conclude that $X_1 = X_2$ and therefore, f is injective.
- 2. We will now show that F is surjective. Let $Y \in P(B)$. Then $Y \subseteq B$. We want to show that Y = F(X) for some $X \subseteq A$. Let $X = \{x \in A | f(x) \in Y\}$ and let us prove set equality F(X) = Y. Let $y \in Y$, since f is surjective, there exists $x \in A$ such that f(x) = y. Since $y \in Y$, $x \in X$ and therefore $y = f(x) \in f''X = f(X)$. For the other direction, let $y \in F(X)$. Then there is $x \in X$ such that f(x) = y. By definition of x, $y = f(x) \in Y$. Hence F(X) = Y and therefore F is surjective. So F is a bijection, and therefore F is invertible.

Therefore, if f is invertible, then F is invertible.

Now suppose that F is invertible. We will show that f is a bijection.

1. We will first show that f is injective. Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. We want to show that $x_1 = x_2$. Let $X_1 = \{x_1\}, X_2 = \{x_2\}$. Then $F(X_1) = \{f(x_1)\}, F(X_2) = \{f(x_2)\}$. As *F* is injective, it follows that $X_1 = X_2$, and thus $x_1 = x_2$. Therefore, *f* is injective.

2. We will now show that f is surjective. Let $y \in B$. We want to show that there exists $x \in A$ such that y = f(x). Let $Y = \{y\}$. Then $Y \in P(B)$. Because F is surjective, there exists X such that Y = F(X). Equivalently, $\{y\} = \{f(x)|x \in X\}$. By the replacement principle and set equality, we have that y = f(x) for some $x \in A$. Therefore, f is surjective. Thus, f is a bijection, and therefore f is invertible.

Thus, if F is invertible, then f is invertible. Therefore, f is invertible if and only if F is invertible.