Problem 1. Prove or disprove the following items:

1. If $f: A \rightarrow B$ is injective, then for every $X \subseteq A, f \upharpoonright X$ is injective.
2. If $f: A \rightarrow B$ is surjective, then for every $X \subseteq A, f \upharpoonright X$ is surjective.

Problem 2. Prove that if $f: A \rightarrow B$ is a function such that for some $X \subsetneq A$, $f \upharpoonright X: X \rightarrow B$ is onto B, then f is not injective.

Problem 3. For each of the following functions, determine if it is injective/ surjective and prove your answer for two of the items which are not the first ones.

1. $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f_{1}(x)=5 x-x^{2}$.
2. $f_{2}: \mathbb{R} \rightarrow P(\mathbb{R})$, defined by $f_{2}(x)=\left\{x^{2}\right\}$.
3. $f_{3}: P(\mathbb{R}) \rightarrow P(\mathbb{N})$, defined by $f_{3}(x)=x \cap \mathbb{N}$.
4. $f_{4}: P(\mathbb{N}) \rightarrow \mathbb{N}$, defined by $f_{4}(x)=\left\{\begin{array}{ll}\min (x) & 4 \in x \\ 0 & \text { else }\end{array}\right.$.
5. $f_{5}: P(\mathbb{R}) \rightarrow P(\mathbb{N}) \times P(\mathbb{Z}) \times P(\mathbb{Q})$, defined by

$$
f_{5}(X)=\langle X \cap \mathbb{N}, X \cap \mathbb{Z}, X \cap \mathbb{Q}\rangle
$$

6. $f_{6}: P(\mathbb{N}) \rightarrow P\left(\mathbb{N}_{\text {even }}\right) \times P\left(\mathbb{N}_{\text {odd }}\right)$ defined by $f_{6}(X)=\langle\{2 n \mid n \in$ $X\},\{2 n+1 \mid n \in X\}\rangle$.
7. $f_{7}:{ }^{\mathbb{R}} R \rightarrow \mathbb{R}$ defined by $f_{7}(f)=f(7)$.

Problem 4. For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of C by f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

(a) Prove that if $f: A \rightarrow B$ is a function and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \subseteq f^{\prime \prime}[A \backslash C] .
$$

(b) Give an example of a function $f: A \rightarrow B$ and a subset $C \subseteq A$ such that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \neq f^{\prime \prime}[A \backslash C]
$$

(c) Prove that if $f: A \rightarrow B$ is an injection and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C] .
$$

Problem 5. Prove that the interleaving function $F:\left({ }^{\mathbb{N}}\{0,1\}\right)^{2} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ defined by

$$
F(\langle f, g\rangle)(n)= \begin{cases}f\left(\frac{n}{2}\right) & n \in \mathbb{N}_{\text {even }} \\ g\left(\frac{n-1}{2}\right) & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

is one-to-one and onto. Prove that it is invertable and find F^{-1}.

Additional Problems

Problem 6. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be function. Prove the following items:

1. If f, g are injective then $g \circ f$ is injective.
2. If f, g are surjective, then $g \circ f$.

Problem 7. Prove that the following functions are invertible and find their inverse:

1. $h:(0, \infty) \rightarrow(0,1)$ defined by $h(x)=\frac{1}{1+x^{2}}$
2. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=\left\{\begin{array}{ll}n+1 & n \in \mathbb{N}_{\text {even }} \\ n-1 & n \in \mathbb{N}_{\text {odd }}\end{array}\right.$.
3. $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by $g(\langle n, m\rangle)=\langle n, n+m\rangle$

Problem 8. Define

$$
\begin{aligned}
f_{1}: \mathbb{N} & \rightarrow \mathbb{N} \times \mathbb{N}, \quad f_{1}(n)=\langle n+1, n+2\rangle \\
f_{2}: \mathbb{N} & \rightarrow \mathbb{N}, \quad f_{2}(n)=n^{2} \\
f_{3}: \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{Z}, \quad f_{3}(\langle n, m\rangle)=n-m \\
f_{4} & : \mathbb{N}
\end{aligned} \rightarrow \mathbb{N}, \quad f_{4}(n)=n+1
$$

Determine if the following compositions are defined and compute them:

1. $f_{1} \circ f_{2}$ and $f_{2} \circ f_{1}$.
2. $f_{2} \circ f_{2}$. and $f_{3} \circ f_{3}$
3. $f_{4} \circ f_{2}$ and $f_{2} \circ f_{4}$.
4. $f_{3} \circ f_{1} \circ f_{2}$ and $f_{4} \circ f_{3} \circ f_{2}$.

Problem 9. Let $A, B \neq \emptyset$ be any set and let $f: A \rightarrow B$ be a function. Define a new function using f, as follows, $F: P(A) \rightarrow P(B)$ defined by $F(X)=\{f(x) \mid x \in X\}$. Prove that f is invertible if and only if F is invertible.

