Homework 3-Solutions

MATH 361

Problem 1. Prove that the collection of all ordered pairs of the form $\langle 1, x\rangle$ does not form a set. [Hint: Prove by contradiction]

Solution. Suppose otherwise that there is a set D which is the collection of all pairs $\langle 1, x\rangle$. Then by the union axiom $E=\cup(U D)$ is also a set. Let us show that E is the set of all sets, let x be any set, then $\langle 1, x\rangle \in D$, and since $\{1, x\} \in\{\{1\},\{1, x\}\}=\langle 1, x\rangle,\{1, x\} \in \cup D$ by definition of union. Again by definition of union it follows that $x \in \cup \cup D$. This is a contradiction to the theorem we proved in class tha the set of all sets do not exists.

Problem 2. Let R be a relation on A. Prove the following statements:

1. R is reflexive if and if $i d_{A} \subseteq R$.

Solution. Suppose that R is reflexive, and let $\langle a, b\rangle \in I d_{A}$, then by definition, $a=b$ and since R is reflexive $\langle a, a\rangle \in R$. In the other direction, suppose that $I d_{A} \subseteq R$. To see that R is reflexive, let $a \in A$, then $\langle a, a\rangle \in I d_{A} \subseteq R$ and therefore $\langle a, a\rangle \in R$.
2. R is symmetric if and only if $R=R^{-1}$.
3. R is transitive if and only if $R \circ R \subseteq R$.

Solution. Suppose that R is transitive, and let $\langle a, c\rangle \in R \circ R$, then by definition of composition there is $b \in A$ such that $\langle a, b\rangle,\langle b, c\rangle \in R$. Since R is transitive it follows that $\langle a, c\rangle \in R$. Hence $R \circ R \subseteq R$. In the other direction, Suppose that $R \circ R \subseteq R$ and let $\langle a, b\rangle,\langle b, c\rangle \in R$. Then by definition $\langle a, c\rangle \in R \circ R$ and by inclusion $\langle a, c\rangle \in R$.
4. R is an equivalence relation if and only if R is reflexive and $R \circ R^{-1} \subseteq R$.

Homework 3-Solutions

MATH 361

Solution. If R is an ER then it is reflexive. also by (2) $R=R^{-1}$ and by (3)

$$
R^{-1} \circ R=R \circ R \subseteq R
$$

In the other direction, suppose that R is reflexive and $R^{-1} \circ R \subseteq R$. To see that R is an ER it remains to see that R is symmetric and transitive, suppose that $\langle a, b\rangle \in R$ then $\langle b, a\rangle \in R^{-1}$ and since R is reflexive $\langle a, a\rangle \in R$. By definition of composition $\langle b, a\rangle \in R^{-1} \circ R$ an by assumption $\langle b, a\rangle \in R$. Hence R is symmetric. By (2) it follows that $R=R^{-1}$ and therefore our assumption translates to $R \circ R \subseteq R$ which by (3) implies that R is transitive.

Problem 3. Let $\Pi \subseteq P(A) \backslash\{\emptyset\}$. Define

$$
F_{\Pi}=\{\langle x, X\rangle \in A \times \Pi \mid x \in X\}
$$

prove that $F_{\Pi}: A \rightarrow P(A)$ is a function of and only if Π is a partition.

Solution. Suppose that F_{Π} is a function (namely total on A and univalent) and let us prove that Π is a partition. Clearly $\emptyset \notin \Pi$ as by assumption $\Pi \subseteq P(A) \backslash\{\emptyset\}$. Also if $X, Y \in \Pi$ are distinct then $X \cap Y=\emptyset$, just otherwise, there is $x \in X \cap Y$ and then $\langle x, X\rangle, x, Y\rangle \in F_{\Pi}$, contradicting F_{Π} being univalent. Finally, $\cup \Pi \subseteq A$ as $\Pi \subseteq P(A)$. For the other direction, let $a \in A$, since F_{Π} is total, there is $X \in \Pi$ such that $\langle a, X\rangle \in F_{\Pi}$ and therefore $a \in X$. By definition of union it follows that $a \in \cup \Pi$.

In the other direction, suppose that Π is a partition. To see that F_{Π} is total, let $a \in A$, then $a \in \cup \Pi$ and therefore there is $X \in \Pi$ such that $a \in X$. by definition this means that $\langle a, X\rangle \in F_{\Pi}$. To see that F_{Π} is univalent,

Homework 3-Solutions

MATH 361
suppose that $a, X\rangle,\langle a, Y\rangle \in F_{\Pi}$, then $a \in X \cap Y$ and since Π is a partition, $X=Y$.

Problem 4. For each of the following relation check whether it is reflexive symmetric or transitive:

1. $\left\{\langle a, b\rangle \in \mathbb{R}^{2} \mid a+b=350\right\}$.

Solution. We only give the short ideas of the proofs Not reflexive $(0+0 \neq 350)$, symmetric $(a+b=b+a)$ and not transitive $(0+350=350$ and $350+0=350$ but $0+0 \neq 350$)
2. $\left\{\langle a, b\rangle \in \mathbb{R}^{2}| | a-b \mid<1\right\}$.

Solution. Reflexive $(|a-a|=0<1)$, symmetric $(|a-b|=|b-a|)$ and not transitive $(|1.5-1|<1$ and $|1-0.5|<1$ but $|1.5-0.5|=1$)
3. $\left\{\langle a, b\rangle \in \mathbb{N}^{2} \mid a-b \equiv 0(\bmod 2)\right\}$

Solution. This is an ER which is in fact E_{2} from class.
4. $\{\langle X, Y\rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset\}$

Solution. not reflexive $(\emptyset \cap \emptyset=\emptyset)$, symmetric (as $X \cap Y=Y \cap X)$ and not transitive $(\{1,2\} \cap\{2,3\} \neq \emptyset$ and $\{2,3\} \cap\{3,4\} \neq \emptyset$ by $\{1,2\} \cap\{3,4\}=\emptyset)$

Problem 5. For each of the following equivalence relation find a system of representatives. No proof required here.

1. $i d_{A}$, where A is a general set.

Homework 3-Solutions

MATH 361

Solution. A is a system for $I d_{A}$.
2. $A \times A$, where A is a general set.

Solution. If $a \in A$ is any element then $\{a\}$ is a system for $A \times A$
3. The relation Res on \mathbb{R} defined as follows: for $a, b \in \mathbb{R}$

$$
\langle a, b\rangle \in \operatorname{Res} \leftrightarrow b-a \in \mathbb{Z}
$$

Solution. [0, 1).
4. $\left\{\langle X, Y\rangle \in P(\mathbb{R})^{2} \mid 3 \notin X \Delta Y\right\}$.

Solution. $\{\{3\}, \emptyset\}$
5. $\left\{\langle\langle x, y\rangle,\langle a, b\rangle\rangle \in(\mathbb{R} \times \mathbb{R})^{2} \mid \min (x, y)=\min (a, b)\right\}$

Solution. $\{\langle r, r+1\rangle r \in \mathbb{R}\}$.
6. for $X=\{0,1\}^{\{0, \ldots, 10\}}$. define

$$
\{\langle f, g\rangle \in X \times X| |\{n \mid f(n)=1\}|=|\{n \mid g(n)=1\}|\}
$$

Solution. $\left\{f_{i} \mid i=0, \ldots, 11\right\}$ where $f_{i}:\{0, \ldots, 10\} \rightarrow\{0,1\}$ defined by

$$
f_{i}(n)= \begin{cases}1 & n<i \\ 0 & n \geq i\end{cases}
$$

7. $\left\{\langle a, b\rangle \in \mathbb{N}^{+} \times \mathbb{N}^{+} \left\lvert\, \exists i \in \mathbb{Z} \cdot \frac{a}{b}=2^{i}\right.\right\}$

Solution. $\mathbb{N}_{\text {odd }} \cup\{2\}$
8. $\left\{\langle x, y\rangle \in(\mathbb{R} \backslash\{0\})^{2} \mid x y>0\right\}$

Solution. $\{-1,1\}$

Homework 3-Solutions

MATH 361
(due October 9) September 29, 2023

Additional Problems

Problem 6. Let $f: A \rightarrow B$ be a function. Prove that if $X \subseteq A$, then $f \cap X \times B$ is a function and equals $f \upharpoonright X$.

Problem 7. Show that if $f: A \rightarrow B, g: B \rightarrow C$ are functions then $g \circ f$ (the composition of the relations) is a function from A to C and that for every $a \in A, g \circ f(a)=g(f(a))$.

Problem 8. Prove that if f is one-to-one and onto B then f^{-1} (the inverse relation) is a function and moreover that $f^{-1} \circ f=I d_{A}$ and $f \circ f^{-1}=I d_{B}$.

