MATH 361

(due October 9) September 29, 2023

Problem 1. Prove that the collection of all ordered pairs of the form (1, x) does not form a set. [Hint: Prove by contradiction]

Solution. Suppose otherwise that there is a set *D* which is the collection of all pairs $\langle 1, x \rangle$. Then by the union axiom $E = \bigcup(\bigcup D)$ is also a set. Let us show that *E* is the set of all sets, let *x* be any set, then $\langle 1, x \rangle \in D$, and since $\{1, x\} \in \{\{1\}, \{1, x\}\} = \langle 1, x \rangle, \{1, x\} \in \bigcup D$ by definition of union. Again by definition of union it follows that $x \in \bigcup \bigcup D$. This is a contradiction to the theorem we proved in class that the set of all sets do not exists.

Problem 2. Let *R* be a relation on *A*. Prove the following statements:

1. *R* is reflexive if and if $id_A \subseteq R$.

Solution. Suppose that *R* is reflexive, and let $\langle a, b \rangle \in Id_A$, then by definition, a = b and since *R* is reflexive $\langle a, a \rangle \in R$. In the other direction, suppose that $Id_A \subseteq R$. To see that *R* is reflexive, let $a \in A$, then $\langle a, a \rangle \in Id_A \subseteq R$ and therefore $\langle a, a \rangle \in R$.

- 2. *R* is symmetric if and only if $R = R^{-1}$.
- 3. *R* is transitive if and only if $R \circ R \subseteq R$.

Solution. Suppose that *R* is transitive, and let $\langle a, c \rangle \in R \circ R$, then by definition of composition there is $b \in A$ such that $\langle a, b \rangle, \langle b, c \rangle \in R$. Since *R* is transitive it follows that $\langle a, c \rangle \in R$. Hence $R \circ R \subseteq R$. In the other direction, Suppose that $R \circ R \subseteq R$ and let $\langle a, b \rangle, \langle b, c \rangle \in R$. Then by definition $\langle a, c \rangle \in R \circ R$ and by inclusion $\langle a, c \rangle \in R$.

4. *R* is an equivalence relation if and only if *R* is reflexive and $R \circ R^{-1} \subseteq R$.

```
MATH 361
```

September 29, 2023

Solution. If *R* is an ER then it is reflexive. also by (2) $R = R^{-1}$ and by (3)

$$R^{-1} \circ R = R \circ R \subseteq R$$

In the other direction, suppose that *R* is reflexive and $R^{-1} \circ R \subseteq R$. To see that *R* is an ER it remains to see that *R* is symmetric and transitive, suppose that $\langle a, b \rangle \in R$ then $\langle b, a \rangle \in R^{-1}$ and since *R* is reflexive $\langle a, a \rangle \in R$. By definition of composition $\langle b, a \rangle \in R^{-1} \circ R$ an by assumption $\langle b, a \rangle \in R$. Hence *R* is symmetric. By (2) it follows that $R = R^{-1}$ and therefore our assumption translates to $R \circ R \subseteq R$ which by (3) implies that *R* is transitive.

Problem 3. Let $\Pi \subseteq P(A) \setminus \{\emptyset\}$. Define

$$F_{\Pi} = \{ \langle x, X \rangle \in A \times \Pi \mid x \in X \}$$

prove that $F_{\Pi} : A \to P(A)$ is a function of and only if Π is a partition.

Solution. Suppose that F_{Π} is a function (namely total on A and univalent) and let us prove that Π is a partition. Clearly $\emptyset \notin \Pi$ as by assumption $\Pi \subseteq P(A) \setminus \{\emptyset\}$. Also if $X, Y \in \Pi$ are distinct then $X \cap Y = \emptyset$, just otherwise, there is $x \in X \cap Y$ and then $\langle x, X \rangle, x, Y \rangle \in F_{\Pi}$, contradicting F_{Π} being univalent. Finally, $\bigcup \Pi \subseteq A$ as $\Pi \subseteq P(A)$. For the other direction, let $a \in A$, since F_{Π} is total, there is $X \in \Pi$ such that $\langle a, X \rangle \in F_{\Pi}$ and therefore $a \in X$. By definition of union it follows that $a \in \bigcup \Pi$.

In the other direction, suppose that Π is a partition. To see that F_{Π} is total, let $a \in A$, then $a \in \bigcup \Pi$ and therefore there is $X \in \Pi$ such that $a \in X$. by definition this means that $\langle a, X \rangle \in F_{\Pi}$. To see that F_{Π} is univalent,

MATH 361

suppose that a, X, $\langle a, Y \rangle \in F_{\Pi}$, then $a \in X \cap Y$ and since Π is a partition, X = Y.

Problem 4. For each of the following relation check whether it is reflexive symmetric or transitive:

1. $\{\langle a, b \rangle \in \mathbb{R}^2 \mid a + b = 350\}.$

Solution. We only give the short ideas of the proofs Not reflexive $(0+0 \neq 350)$, symmetric (a+b=b+a) and not transitive (0+350 = 350) and 350 + 0 = 350 but $0 + 0 \neq 350$)

2. $\{\langle a,b\rangle \in \mathbb{R}^2 \mid |a-b| < 1\}.$

Solution. Reflexive (|a - a| = 0 < 1), symmetric (|a - b| = |b - a|) and not transitive (|1.5 - 1| < 1 and |1 - 0.5| < 1 but |1.5 - 0.5| = 1)

3.
$$\{\langle a, b \rangle \in \mathbb{N}^2 \mid a - b \equiv 0 \pmod{2}\}$$

Solution. This is an ER which is in fact *E*₂ from class.

4. $\{\langle X, Y \rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset\}$

Solution. not reflexive $(\emptyset \cap \emptyset = \emptyset)$, symmetric (as $X \cap Y = Y \cap X$) and not transitive $(\{1,2\} \cap \{2,3\} \neq \emptyset$ and $\{2,3\} \cap \{3,4\} \neq \emptyset$ by $\{1,2\} \cap \{3,4\} = \emptyset$)

Problem 5. For each of the following equivalence relation find a system of representatives. No proof required here.

1. id_A , where A is a general set.

(due October 9)

Solution. *A* is a system for Id_A .

2. $A \times A$, where A is a general set.

Solution. If $a \in A$ is any element then $\{a\}$ is a system for $A \times A$

3. The relation *Res* on \mathbb{R} defined as follows: for $a, b \in \mathbb{R}$

$$\langle a, b \rangle \in Res \leftrightarrow b - a \in \mathbb{Z}$$

Solution. [0, 1).

4. $\{\langle X, Y \rangle \in P(\mathbb{R})^2 \mid 3 \notin X \Delta Y\}.$

Solution. $\{\{3\}, \emptyset\}$

5. $\{\langle \langle x, y \rangle, \langle a, b \rangle \rangle \in (\mathbb{R} \times \mathbb{R})^2 \mid \min(x, y) = \min(a, b)\}$

Solution. $\{\langle r, r+1 \rangle r \in \mathbb{R}\}.$

6. for
$$X = \{0, 1\}^{\{0, \dots, 10\}}$$
. define

$$\{\langle f,g \rangle \in X \times X \mid \left| \{n \mid f(n) = 1\} \right| = \left| \{n \mid g(n) = 1\} \right| \}$$

Solution. $\{f_i \mid i = 0, ..., 11\}$ where $f_i : \{0, ..., 10\} \rightarrow \{0, 1\}$ defined by

$$f_i(n) = \begin{cases} 1 & n < i \\ 0 & n \ge i \end{cases}$$

7. $\{\langle a, b \rangle \in \mathbb{N}^+ \times \mathbb{N}^+ \mid \exists i \in \mathbb{Z}. \frac{a}{b} = 2^i\}$

Solution. $\mathbb{N}_{odd} \cup \{2\}$

8. $\{\langle x, y \rangle \in (\mathbb{R} \setminus \{0\})^2 \mid xy > 0\}$

Solution. $\{-1, 1\}$

Additional Problems

Problem 6. Let $f : A \to B$ be a function. Prove that if $X \subseteq A$, then $f \cap X \times B$ is a function and equals $f \upharpoonright X$.

Problem 7. Show that if $f : A \to B$, $g : B \to C$ are functions then $g \circ f$ (the composition of the relations) is a function from *A* to *C* and that for every $a \in A$, $g \circ f(a) = g(f(a))$.

Problem 8. Prove that if *f* is one-to-one and onto *B* then f^{-1} (the inverse relation) is a function and moreover that $f^{-1} \circ f = Id_A$ and $f \circ f^{-1} = Id_B$.