Homework 3

MATH 361
(due October 9)
September 29, 2023

Problem 1. Prove that the collection of all ordered pairs of the form $\langle 1, x\rangle$ does not form a set. [Hint: Prove by contradiction]

Problem 2. Let R be a relation on A. Prove the following statements:

1. R is reflexive if and if $i d_{A} \subseteq R$.
2. R is symmetric if and only if $R=R^{-1}$.
3. R is transitive if and only if $R \circ R \subseteq R$.
4. R is an equivalence relation if and only if R is reflexive and $R \circ R^{-1} \subseteq R$.

Problem 3. Let $\Pi \subseteq P(A) \backslash\{\emptyset\}$. Define

$$
F_{\Pi}=\{\langle x, X\rangle \in A \times \Pi \mid x \in X\}
$$

prove that $F_{\Pi}: A \rightarrow P(A)$ is a function of and only if Π is a partition.

Problem 4. For each of the following relation check whether it is reflexive symmetric or transitive:

1. $\left\{\langle a, b\rangle \in \mathbb{R}^{2} \mid a+b=350\right\}$.
2. $\left\{\langle a, b\rangle \in \mathbb{R}^{2}| | a-b \mid<1\right\}$.
3. $\left\{\langle a, b\rangle \in \mathbb{N}^{2} \mid a-b \equiv 0(\bmod 2)\right\}$
4. $\{\langle X, Y\rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X \cap Y \neq \emptyset\}$

Problem 5. For each of the following equivalence relation find a system of representatives. No proof required here.

1. $i d_{A}$, where A is a general set.

Homework 3

MATH 361
(due October 9)
2. $A \times A$, where A is a general set.
3. The relation Res on \mathbb{R} defined as follows: for $a, b \in \mathbb{R}$

$$
\langle a, b\rangle \in \operatorname{Res} \leftrightarrow b-a \in \mathbb{Z}
$$

4. $\left\{\langle X, Y\rangle \in P(\mathbb{R})^{2} \mid 3 \notin X \Delta Y\right\}$.
5. $\left\{\langle\langle x, y\rangle,\langle a, b\rangle\rangle \in(\mathbb{R} \times \mathbb{R})^{2} \mid \min (x, y)=\min (a, b)\right\}$
6. for $X=\{0,1\}^{\{0, \ldots, 10\}}$. define

$$
\{\langle f, g\rangle \in X \times X| |\{n \mid f(n)=1\}|=|\{n \mid g(n)=1\}|\}
$$

7. $\left\{\langle a, b\rangle \in \mathbb{N}^{+} \times \mathbb{N}^{+} \left\lvert\, \exists i \in \mathbb{Z} \cdot \frac{a}{b}=2^{i}\right.\right\}$
8. $\left\{\langle x, y\rangle \in(\mathbb{R} \backslash\{0\})^{2} \mid x y>0\right\}$

Additional Problems

Problem 6. Let $f: A \rightarrow B$ be a function. Prove that if $X \subseteq A$, then $f \cap X \times B$ is a function and equals $f \upharpoonright X$.

Problem 7. Show that if $f: A \rightarrow B, g: B \rightarrow C$ are functions then $g \circ f$ (the composition of the relations) is a function from A to C and that for every $a \in A, g \circ f(a)=g(f(a))$.

Problem 8. Prove that if f is one-to-one and onto B then f^{-1} (the inverse relation) is a function and moreover that $f^{-1} \circ f=I d_{A}$ and $f \circ f^{-1}=I d_{B}$.

