(due October 20)

Problem 1. Prove that rational addition defined by:

$$[\langle n, m \rangle]_{\sim_{O}} + [\langle n', m' \rangle]_{\sim_{O}} = [\langle nm' + n'm, mm' \rangle]_{\sim_{O}}$$

does not depend on the choice of representatives.

Solution. Suppose $[\langle n, m \rangle]_{\sim_Q} = [\langle n_1, m_1 \rangle]_{\sim_Q}$ and $[\langle n', m' \rangle]_{\sim_Q} = [\langle n'_1, m'_1 \rangle]_{\sim_Q}$ we need to prove that $[\langle nm' + n'm, mm' \rangle]_{\sim_Q} = [\langle n_1m'_1 + n'_1m_1, m_1m'_1 \rangle]_{\sim_Q}$. By assumption,

(I)
$$nm_1 = n_1m$$
 and (II) $n'm'_1 = n'_1m'$

We need to prove that $(nm' + n'm)m_1m'_1 = (n_1m'_1 + n'_1m_1)mm'$. Opening the brackets, this reduces to

(*)
$$nm'm_1m'_1 + n'mm_1m'_1 = n_1m'_1mm' + n'_1m_1mm'$$

Multiplying (*I*) by $m'm'_1$ and (*II*) by mm_1 we have

$$nm'm_1m'_1 = n_1m'_1mm'$$
 and $n'mm_1m'_1 = n'_1m_1mm'$

add those qualities to deduce that (*) holds.

Problem 2. For two function $f, g \in \mathbb{N}\mathbb{N}$ deinfe

$$f \leq^* g \iff \exists N \forall n \geq N, \ f(n) \leq g(n)$$

1. Prove that \leq^* is not anti-symmetric.

Solution. For example $f_1(n) = 0$ and $f_2(n) = \begin{cases} 1 & n = 0 \\ 0 & n > 0 \end{cases}$ are tw distinct functions (Since $f_1(0) = 0 \neq 1 = f_2(0)$) and for every $n \ge 1$ $f_1(n) = 0 = f_2(n)$. So $f_1 \le^* f_2$ and $f_2 \le^* f_1$ but $f_1 \neq f_2$.

1

2. Let

$$E = \{ \langle f, g \rangle \in ({}^{\mathbb{N}}\mathbb{N})^2 \mid \exists N \forall n \geq N, f(n) = g(n) \}$$

Prove that *E* is an equivalence relation.

Solution. Proved in class

3. Prove that the relation $[f]_E \leq^* [g]_E$ iff $f \leq^* g$ does not depend on the choice of representatives and partially orders $\mathbb{N}\mathbb{N}/E$.

Solution. Suppose that $[f']_E = [f]_E$ and $[g']_E = [f]_E$. We need to prove that $f \leq^* g$ if and only if $f' \leq^* g'$. By symmetry, it suffices to prove $f \leq^* g \Rightarrow f' \leq^* g'$. Suppose there is N such that $\forall n \geq N$, $f(n) \leq g(n)$. Since $[f]_E = [f']_E$ and $[g]_E = [g']_E$ there are N_1, N_2 such that for every $n \geq N_1 f(n) = f'(n)$ and for every $n \geq N_2, g(n) = g'(n)$. Let $N^* = \max(N, N_1, N_2)$. Then for every $n \geq N^*$,

$$f'(n) = f(n) \le g(n) = g'(n),$$

hence $f' \leq g'$. To see that $\leq partially$ orders $\mathbb{N}\mathbb{N}$, it is clearly reflexive and transitive. To see it is strongly anti-symmetric, suppose that $[f]_E \leq [g]_E$ and $[g]_E^*[f]_E$, we need to prove that $[f]_E = [g]_E$. Translating this, we have that $f \leq g$ and $g \leq f$ and we need to prove that fEg. There are N_1, N_2 such that for every $n \geq N_1$, $f(n) \leq g(n)$ and for every $n \geq N_2$, $g(n) \leq f(n)$. Hence for every $n \geq \max(N_1, N_2)$, $f(n) \leq g(n) \land g(n) \leq f(n) \Rightarrow f(n) = g(n)$. It follows that there if Nsuch that for every $n \geq N$ f(n) = g(n), namely fEg, as desired.

Problem 3. Prove or disprove $\langle \mathbb{N}, \langle \rangle \simeq \langle \mathbb{N} \times \mathbb{N}, \langle _{Lex} \rangle$

MATH 361

Solution. Disprove! Suppose toward a contradiction that $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is an isomorphism (order preserving bijection). Since f is supposed to be onto, there is *n* such that $f(n) = \langle 1, 0 \rangle$. Since *f* is order preserving, for every m < n, $f(m) <_{LEX} f(n) = \langle 1, 0 \rangle$ and therefore there is k such that f(n-1) =(0,k). Again since f is onto, there is $t \in \mathbb{N}$ such that f(t) = (0, k + 1), however, $(0, k) <_{LEX} (0, k + 1) <_{LEX} (1, 0)$ and so f(n - 1) < f(t) < f(n). Since *f* is order preserving, n - 1 < t < n, contradiction to the fact that there are no natural numbers between n - 1 and n. Note that this prof does not work if n = 0. Prove the case n = 0 yourself!

Problem 4. Prove that for all $m \in \mathbb{N}$, either $m = \emptyset$ or $\emptyset \in m$. [Hint: Show that $S = \{m \in \mathbb{N} \mid m = \emptyset \text{ or } \emptyset \in m\}$ is inductive.]

Solution. Let us prove that *S* is an inductive set. Indeed, $0 = \emptyset \in S$. Suppose that $n \in S$, if n = 0, then $\emptyset = 0 \in 0 \cup \{0\} = 1$ and therefore $1 \in S$. Otherwise, by definition of $S, \emptyset \in m$. It follows that $\emptyset \in m \cup \{m\}$ (by definition of union) and therefore S is inductive. By the induction theorem, $S = \mathbb{N}$.

Problem 5. Given distributively in the natural numbers, prove that the multiplication is associative

Solution. Let us prove by induction on *k* that $(m \cdot n) \cdot k = m \cdot (n \cdot k)$. For k = 0 we have $(m \cdot n) \cdot 0 = 0$ by definition of multiplication. and also $n \cdot 0 = 0$ for the same reason. Hence $m \cdot (n \cdot 0) = m \cdot 0 = 0$. Suppose that this holds for k, and let us prove for k + 1.

$$(n \cdot m) \cdot (k+1) = (nm) \cdot k + (n \cdot m) = (m \cdot k) + n \cdot m = (m \cdot k + m) = n \cdot (m \cdot (k+1))$$

Homework 4-Sols

MATH 361

(due October 20)

(*)- by the recursive definition $x \cdot (k + 1) = x \cdot k + x$.

(**)- The induction hypothesis

(***)- since we assume distributively.

Problem 6. Prove that $(n \cdot m)^k = n^k \cdot m^k$.

Solution. By induction on k, for k = 0 we have

$$(n \cdot m)^0 = 1$$

by the definition of exponent and also $n^0 = 1 = m^0$. Now $n^0 \cdot m^0 = 1 \cdot 1 = 1 \cdot (0+1) = 1 \cdot 0 + 1 = 0 + 1 = 1$. Assume this holds for *k* and let us prove for k + 1.

$$(n \cdot m)^{k+1} = (n \cdot m)^k \cdot (n \cdot m) = (n^k \cdot m^k) \cdot (n \cdot m) = (n^k \cdot m) \cdot (m^k \cdot m) = n^{k+1} \cdot m^{k+1} \cdot m^{k+1}$$

(*)- recursive definition $x^{k+1} = x^k \cdot x$.

(**)- induction hypothesis.

(***)- associativity and commutativity of multiplication