Homework 4

Problem 1. Prove that rational addition defined by:

$$
[\langle n, m\rangle]_{\sim_{Q}}+\left[\left\langle n^{\prime}, m^{\prime}\right\rangle\right]_{\sim_{Q}}=\left[\left\langle n m^{\prime}+n^{\prime} m, m m^{\prime}\right\rangle\right]_{\sim_{Q}}
$$

does not depend on the choice of representatives.
Problem 2. For two function $f, g \in \mathbb{N} \mathbb{N}$ deinfe

$$
f \leq^{*} g \Longleftrightarrow \exists N \forall n \geq N, f(n) \leq g(n)
$$

1. Prove that \leq^{*} is not anti-symmetric.
2. Let

$$
E=\left\{\langle f, g\rangle \in\left({ }^{\mathbb{N}} \mathbb{N}\right)^{2} \mid \exists N \forall n \geq N, f(n)=g(n)\right\}
$$

Prove that E is an equivalence relation.
3. Prove that the relation $[f]_{E} \leq^{*}[g]_{E}$ iff $f \leq^{*} g$ does not depend on the choice of representatives and partially orders ${ }^{\mathbb{N}} \mathbb{N} / E$.

Problem 3. Prove or disprove $\langle\mathbb{N},<\rangle \simeq\left\langle\mathbb{N} \times \mathbb{N},<_{\text {Lex }}\right\rangle$

Problem 4. Prove that for all $m \in \mathbb{N}$, either $m=\emptyset$ or $\emptyset \in m$. [Hint: Show that $S=\{m \in \mathbb{N} \mid m=\emptyset$ or $\emptyset \in m\}$ is inductive.]

Problem 5. Given distributively in the natural numbers, prove that the multiplication is associative

Problem 6. Prove that $(n \cdot m)^{k}=n^{k} \cdot m^{k}$.

