(due October 20)

October 13, 2023

Problem 1. Prove that rational addition defined by:

$$[\langle n,m\rangle]_{\sim_Q} + [\langle n',m'\rangle]_{\sim_Q} = [\langle nm'+n'm,mm'\rangle]_{\sim_Q}$$

does not depend on the choice of representatives.

Problem 2. For two function $f, g \in \mathbb{N}$ deinfe

$$f \leq^* g \iff \exists N \forall n \geq N, \ f(n) \leq g(n)$$

- 1. Prove that \leq^* is not anti-symmetric.
- 2. Let

$$E = \{ \langle f, g \rangle \in (\mathbb{N})^2 \mid \exists N \forall n \ge N, f(n) = g(n) \}$$

Prove that *E* is an equivalence relation.

3. Prove that the relation $[f]_E \leq^* [g]_E$ iff $f \leq^* g$ does not depend on the choice of representatives and partially orders $\mathbb{N}N/E$.

Problem 3. Prove or disprove $\langle \mathbb{N}, < \rangle \simeq \langle \mathbb{N} \times \mathbb{N}, <_{Lex} \rangle$

Problem 4. Prove that for all $m \in \mathbb{N}$, either $m = \emptyset$ or $\emptyset \in m$. [Hint: Show that $S = \{m \in \mathbb{N} \mid m = \emptyset \text{ or } \emptyset \in m\}$ is inductive.]

Problem 5. Given distributively in the natural numbers, prove that the multiplication is associative

Problem 6. Prove that $(n \cdot m)^k = n^k \cdot m^k$.