(due October 27)

October 20, 2023

Problem 1. 1. Prove that addition in \mathbb{Z} is commutative. [Hint: use the fact that addition in \mathbb{N} is already known to be commutative]

Solution. By definition of addition,

$$[\langle n, m \rangle]_{\sim_Z} + [\langle n', m' \rangle]_{\sim_Z} = [\langle n + n', m + m' \rangle]_{\sim_Z}.$$

Since Addition in \mathbb{N} is commutative,

$$[\langle n'+n, m+m' \rangle]_{\sim Z} = [\langle n', m' \rangle]_{\sim Z} + [\langle n, m \rangle]_{\sim Z}$$

2. Recall that a natural number n is identified with $n = [\langle n, 0 \rangle]_{\sim \mathbb{Z}}$ and $-n := [\langle 0, n \rangle]_{\sim \mathbb{Z}}$. Prove that n + (-n) = 0.

Solution. $n + (-n) = [\langle n, 0 \rangle]_{\sim_Z} + [\langle 0, n \rangle]_{\sim_Z} = [\langle n, n \rangle]_{\sim_Z} =^* [\langle 0, 0 \rangle]_{\sim_Z}$ to see (*), note that n + 0 = 0 + n and therefore $\langle 0, 0 \rangle \sim_Z \langle n, n \rangle$ which implies that $[\langle 0, 0 \rangle]_{\sim_Z} = [\langle n, n \rangle]_{\sim_Z}$

Problem 2. Prove that for every $[\langle n, m \rangle]_{\sim_Q} \in \mathbb{Q}$ there is $n', m' \in \mathbb{Z}$ such that m' > 0 and $[\langle n, m \rangle]_{\sim_Q} = [\langle n', m' \rangle]_{\sim_Q}$.

Solution. If m > 0 just take n' = n and m' = m. If m < 0, take n' = -n and m' = -m. Then m' > 0 and nm' = n(-m) = (-n)m = n'm. Hence $[\langle n, m \rangle]_{\sim_Q} = [\langle n', m' \rangle]_{\sim_Q}$.

Problem 3. Prove that $(0,1) \cap \mathbb{Q}$ with the regular order is ismorphic to \mathbb{Q} .[Hint: Apply Cantor's theorem, no need to prove htat $(0,1) \cap \mathbb{Q}$ is countable.]

Solution. Done in class.

Homework 5-Sols

MATH 361 (due October 27)

October 20, 2023

Problem 4. Prove that the union of Dedekind cuts is a Dedekind cut.

Solution. There is a typo here, this should have been that every non-empty(!) bounded(!) union of Dedekind cuts is a Dedekind cut. Let $\mathcal{F} \subseteq \mathbb{R}$ be a set of Dedekind cuts such that $r \in \mathbb{R}$ bounded \mathcal{F} . Let us prove that $\cup \mathcal{F}$ is a Dedekind cut. Since \mathcal{F} is non-empty, there is $s \in \mathcal{F}$, and $s \neq \emptyset$ since s is a D.cut. Since $s \cup \mathcal{F}$, $\cup \mathcal{F} \neq \emptyset$. To see that $\cup \mathcal{F}$ is downward closed, let $x \in \cup \mathcal{F}$ and y < x. Then there is $s \in \mathcal{F}$ such that $x \in s$. Since s is a D.cut, $y \in s$ and therefore $y \in \cup \mathcal{F}$. To see that $\cup \mathcal{F}$ has no last element, let $x \in \cup \mathcal{F}$, then there is $s \in \mathcal{F}$ such that $s \in s$. Since $s \in \mathcal{F}$ is a D.cut, it had no last element and therefore there is $s \in \mathcal{F}$ such that $s \in \mathcal{F}$ such t

Problem 5. Prove that the function $f(q) = \{q' \in \mathbb{Q} \mid q' < q\}$ is an embedding of \mathbb{Q} in \mathbb{R} .

Solution. To see it is one-to-one, let $q_1 < q_2$, then by density of the rationals there is $q_1 < q < q_2$, then $q \in f(q_2)$ but $q \notin f(q_1)$. Hence $f(q_1) \neq f(q_2)$. Prove that it is order preserving.

Problem 6. Recall that for $x \in \mathbb{R}$ we define:

$$-x = \{ q \in \mathbb{Q} \mid \exists s > q, \ -s \notin x \}.$$

Prove that $-x \in \mathbb{R}$.

Homework 5-Sols

(due October 27)

October 20, 2023

Solution. To see that -x is not empty, take any $t \notin x$ (which exists since x is bounded in \mathbb{Q}) and consider q = -(t+1). Then for s = -t, we have that s > q and $-s = t+1 \notin x$ (since otherwise also $t \in x$ by downward closure of D.cuts). Hence $q \in -x$. To see that it is non-empty. It is easy to see it is downward closed. To see it as no last element, let $q \in -x$, then there is s > q such that $-s \notin x$. By density of the rationals, find q < q' < s, then $q' \in x$ as well as witnessed by the same s. It remains to see that -x is bounded. Take any $p \in x$, then -p is not in x since otherwise there is s > p such that $-s \notin x$, but -s < -p and $-p \in x$ so $-s \in x$ by downwards closure. So -p > q for every $q \in -x$ (since otherwise $p \leq q$ and we already showed that -x is downwards closed so $p \in -x$, contradiction).

1 Additional problems

Problem 7. In this problem we are going to prove Cantor's theorem for dense linear orders with no least and last element. Recall that the theorem is:

Suppose that $\langle A, <_A \rangle$ is a linearly ordered set such that:

(a) *A* is countable.

MATH 361

- (b) the order $<_A$ is dense in itself i.e. for every $a_1, a_2 \in A$ if $a_1 <_A a_2$ then there is $a_3 \in A$ such that $a_1 <_A a_3 <_A a_2$.
- (c) There is no least element in A, namely for every $a \in A$ there is $b \in A$ such that $b <_A a$.

(due October 27)

October 20, 2023

(d) There is no last element, namely, for every $a \in A$ there is $b \in A$ such that $b >_A a$.

Then
$$\langle A, \langle A \rangle \simeq \langle \mathbb{Q}, \langle \rangle$$
.

To prove the theorem let us construct an isomorphism $f : \mathbb{Q} \to A$.

- Step 1: Enumerate $A = \{a_n \mid n \in \mathbb{N}\}$ and $\mathbb{Q} = \{q_n \mid n \in \mathbb{N}\}$, explain why is this possible.
- step 2: Define recursively a sequence of pairs $\langle x_n, y_n \rangle$ in $\mathbb{Q} \times A$.
 - (I) Let $\langle x_0, y_0 \rangle = \langle x_1, y_1 \rangle = \langle q_0, a_0 \rangle$.
 - (II) (For clarity reasons, let us do n = 2, 3).
 - (i) If $q_1 > q_0$ pick $a_m >_A a_0$.
 - (ii) If $q_1 < q_0$ pick $a_m <_A a_0$.

Explain why there must be such an a_m . Define $\langle x_2, y_2 \rangle = \langle q_1, a_1 \rangle$. If $a_m = a_1$, define also $\langle x_3, y_3 \rangle = \langle q_1, a_1 \rangle$. Otherwise, consider a_1 ,

- (i) If $a_1 <_A \min(a_0, a_m)$ pick $q_k < \min(q_0, q_1)$.
- (ii) If $a_1 <_A \max(a_0, a_m)$ pick $q_k > \max(q_0, q_1)$.
- (iii) If $\min(a_0, a_m) <_A a_1 <_A \max(a_0, a_m)$ pick $\min(q_0, q_1) < q_k < \max(q_0, q_1)$.

Explain why these are the only three possibilities and why there must be such an q_k . Define $\langle x_3, y_3 \rangle = q_k, a_1 \rangle$.

(III) Suppose that $\langle x_0, y_0 \rangle$,, $\langle x_{2n-1}, y_{2n-1} \rangle$ have been defined so that $x_i < x_j$ if and only if $y_i <_A y_j$ and consider q_n :

(due October 27)

October 20, 2023

- (i) If $q_n = x_i$ for some i < 2n, define $\langle x_{2n}, y_{2n} \rangle = \langle x_i, y_i \rangle$.
- (ii) If $q_n < \min\{x_1, ..., x_{2n-1}\}$ pick $a <_A \min\{y_1, ..., y_{2n-1}\}$.
- (iii) If $q_n > \max\{x_1, ..., x_{2n-1}\}$ pick $a >_A \max\{y_1, ..., y_{2n-1}\}$.
- (iv) Otherwise let x_i be the maximal among $x_1, ..., x_{2n-1}$ which is below q_n and let x_j be minimal among $x_1, ..., x_{2n-1}$ which is above q_n (why are there such x_i and x_j). Then $x_i < q_n < x_j$ and pick $y_i <_A a <_A y_j$ (why can we find such a?)

Define $\langle x_{2n}, y_{2n} \rangle = \langle q_n, a \rangle$

Fill up the definition of $\langle x_{2n+1}, y_{2n+1} \rangle$ considering now a_n . This should be very similar to the above

- Step 3: Define $f = \{\langle x_n, y_n \rangle \mid n \in \mathbb{N}\}$ Prove that $f : \mathbb{Q} \to A$ is a function. The totality should follow from the fact that $\mathbb{Q} = \{q_n \mid n \in \mathbb{N}\}$.
- Step 4: Prove that f is order preserving. Use the recursive definition.
- Step 5: Prove that F is a bijection (1-1 should follow in general for order preserving functions and onto follows from the fact that A = {a_n | n ∈ N})