Homework 5-Sols

MATH 361

Problem 1. 1. Prove that addition in \mathbb{Z} is commutative. [Hint: use the fact that addition in \mathbb{N} is already known to be commutative]

Solution. By definition of addition,

$$
[\langle n, m\rangle]_{\sim_{Z}}+\left[\left\langle n^{\prime}, m^{\prime}\right\rangle\right]_{\sim_{Z}}=\left[\left\langle n+n^{\prime}, m+m^{\prime}\right\rangle\right]_{\sim_{Z}} .
$$

Since Addition in \mathbb{N} is commutative,

$$
\left[\left\langle n^{\prime}+n, m+m^{\prime}\right\rangle\right]_{\sim_{Z}}=\left[\left\langle n^{\prime}, m^{\prime}\right\rangle\right]_{\sim_{Z}}+[\langle n, m\rangle]_{\sim_{Z}} .
$$

2. Recall that a natural number n is identified with $n=[\langle n, 0\rangle]_{\sim_{Z}}$ and $-n:=[\langle 0, n\rangle]_{\sim_{z}}$. Prove that $n+(-n)=0$.

Solution. $n+(-n)=[\langle n, 0\rangle]_{\sim_{Z}}+[\langle 0, n\rangle]_{\sim_{Z}}=[\langle n, n\rangle]_{\sim_{Z}}=^{*}[\langle 0,0\rangle]_{\sim_{Z}}$ to see $\left({ }^{*}\right)$, note that $n+0=0+n$ and therefore $\langle 0,0\rangle \sim_{Z}\langle n, n\rangle$ which implies that $[\langle 0,0\rangle]_{\sim_{Z}}=[\langle n, n\rangle]_{\sim_{Z}}$

Problem 2. Prove that for every $[\langle n, m\rangle]_{\sim_{Q}} \in \mathbb{Q}$ there is $n^{\prime}, m^{\prime} \in \mathbb{Z}$ such that $m^{\prime}>0$ and $[\langle n, m\rangle]_{\sim_{Q}}=\left[\left\langle n^{\prime}, m^{\prime}\right\rangle\right]_{\sim_{Q}}$.

Solution. If $m>0$ just take $n^{\prime}=n$ and $m^{\prime}=m$. If $m<0$, take $n^{\prime}=-n$ and $m^{\prime}=-m$. Then $m^{\prime}>0$ and $n m^{\prime}=n(-m)=(-n) m=n^{\prime} m$. Hence $[\langle n, m\rangle]_{\sim_{Q}}=\left[\left\langle n^{\prime}, m^{\prime}\right\rangle\right]_{\sim_{Q}}$.

Problem 3. Prove that $(0,1) \cap \mathbb{Q}$ with the regular order is ismorphic to \mathbb{Q}.[Hint: Apply Cantor's theorem, no need to prove htat $(0,1) \cap \mathbb{Q}$ is countable.]

Solution. Done in class.

Homework 5-Sols

Problem 4. Prove that the union of Dedekind cuts is a Dedekind cut.

Solution. There is a typo here, this should have been that every nonempty(!) bounded(!) union of Dedekind cuts is a Dedekind cut. Let $\mathcal{F} \subseteq \mathbb{R}$ be a set of Dedekind cuts such that $r \in \mathbb{R}$ bounded \mathcal{F}. Let us prove that $\cup \mathcal{F}$ is a Dedekind cut. Since \mathcal{F} is non-empty, there is $s \in \mathcal{F}$, and $s \neq \emptyset$ since s is a D.cut. Since $s \cup \mathcal{F}, \cup \mathcal{F} \neq \emptyset$. To see that $\cup \mathcal{F}$ is downward closed, let $x \in \cup \mathcal{F}$ and $y<x$. Then there is $s \in \mathcal{F}$ such that $x \in s$. Since s is a D.cut, $y \in s$ and therefore $y \in \cup \mathcal{F}$. To see that $\cup \mathcal{F}$ has no last element, let $x \in \cup \mathcal{F}$, then there is $s \in \mathcal{F}$ such that $x \in s$. Since s is a D.cut, it had no last element and therefore there is $x<y \in s$. But then $y \in \cup \mathcal{F}$ and therefore \mathcal{F} has no last element. Finally, to see that $\cup \mathcal{F}$ is bounded, since \mathcal{F} is bounded, there is $r \in \mathbb{R}$ such that for every $s \in \mathcal{F}, s \subseteq r$. Since r is bounded in \mathbb{Q}, there is $q \in \mathbb{Q}$ such that for every $p \in r, p<q$. Hence for every $x \in \cup \mathcal{F}$, there is $s \in \mathcal{F}$ such that $x \in s$ and therefore $x \in r$ and hence $x<q$. It follows that $\cup \mathcal{F}$ is bounded in \mathbb{Q}.

Problem 5. Prove that the function $f(q)=\left\{q^{\prime} \in \mathbb{Q} \mid q^{\prime}<q\right\}$ is an embedding of \mathbb{Q} in \mathbb{R}.

Solution. To see it is one-to-one, let $q_{1}<q_{2}$, then by density of the rationals there is $q_{1}<q<q_{2}$, then $q \in f\left(q_{2}\right)$ but $q \notin f\left(q_{1}\right)$. Hence $f\left(q_{1}\right) \neq f\left(q_{2}\right)$.

Prove that it is order preserving.

Problem 6. Recall that for $x \in \mathbb{R}$ we define:

$$
-x=\{q \in \mathbb{Q} \mid \exists s>q,-s \notin x\} .
$$

Prove that $-x \in \mathbb{R}$.

Homework 5-Sols

Solution. To see that $-x$ is not empty, take any $t \notin x$ (which exists since x is bounded in $\mathbb{Q})$ and consider $q=-(t+1)$. Then for $s=-t$, we have that $s>q$ and $-s=t+1 \notin x$ (since otherwise also $t \in x$ by downward closure of D.cuts). Hence $q \in-x$. To see that it is non-empty. It is easy to see it is dowmward closed. To see it as no last element, let $q \in-x$, then there is $s>q$ such that $-s \notin x$. By density of the rationals, find $q<q^{\prime}<s$, then $q^{\prime} \in x$ as well as witnessed by the same s. It remains to see that $-x$ is bounded. Take any $p \in x$, then $-p$ is not in x since otherwise there is $s>p$ such that $-s \notin x$, but $-s<-p$ and $-p \in x$ so $-s \in x$ by downwards closure. So $-p>q$ for every $q \in-x$ (since otherwise $p \leq q$ and we already showed that $-x$ is downwards closed so $p \in-x$, contradiction).

1 Additional problems

Problem 7. In this problem we are going to prove Cantor's theorem for dense linear orders with no least and last element. Recall that the theorem is:

Suppose that $\left\langle A,<_{A}\right\rangle$ is a linearly ordered set such that:
(a) A is countable.
(b) the order $<_{A}$ is dense in itself i.e. for every $a_{1}, a_{2} \in A$ if $a_{1}<_{A} a_{2}$ then there is $a_{3} \in A$ such that $a_{1}<_{A} a_{3}<_{A} a_{2}$.
(c) There is no least element in A, namely for every $a \in A$ there is $b \in A$ such that $b<_{A} a$.

Homework 5-Sols

MATH 361
(d) There is no last element, namely, for every $a \in A$ there is $b \in A$ such that $b>_{A} a$.

$$
\text { Then }\left\langle A,<_{A}\right\rangle \simeq\langle\mathbb{Q},<\rangle
$$

To prove the theorem let us construct an isomorphism $f: \mathbb{Q} \rightarrow A$.

- Step 1: Enumerate $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ and $\mathbb{Q}=\left\{q_{n} \mid n \in \mathbb{N}\right\}$, explain why is this possible.
- step 2: Define recursively a sequence of pairs $\left\langle x_{n}, y_{n}\right\rangle$ in $\mathbb{Q} \times A$.
(I) Let $\left\langle x_{0}, y_{0}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle=\left\langle q_{0}, a_{0}\right\rangle$.
(II) (For clarity reasons, let us do $n=2,3$).
(i) If $q_{1}>q_{0}$ pick $a_{m}>_{A} a_{0}$.
(ii) If $q_{1}<q_{0}$ pick $a_{m}<_{A} a_{0}$.

Explain why there must be such an a_{m}. Define $\left\langle x_{2}, y_{2}\right\rangle=$ $\left\langle q_{1}, a_{1}\right\rangle$. If $a_{m}=a_{1}$, define also $\left\langle x_{3}, y_{3}\right\rangle=\left\langle q_{1}, a_{1}\right\rangle$. Otherwise, consider a_{1},
(i) If $a_{1}<_{A} \min \left(a_{0}, a_{m}\right)$ pick $q_{k}<\min \left(q_{0}, q_{1}\right)$.
(ii) If $a_{1}<_{A} \max \left(a_{0}, a_{m}\right)$ pick $q_{k}>\max \left(q_{0}, q_{1}\right)$.
(iii) If $\min \left(a_{0}, a_{m}\right)<_{A} a_{1}<_{A} \max \left(a_{0}, a_{m}\right)$ pick $\min \left(q_{0}, q_{1}\right)<q_{k}<$ $\max \left(q_{0}, q_{1}\right)$.

Explain why these are the only three possibilities and why there must be such an q_{k}. Define $\left.\left\langle x_{3}, y_{3}\right\rangle=q_{k}, a_{1}\right\rangle$.
(III) Suppose that $\left\langle x_{0}, y_{0}\right\rangle, \ldots .,\left\langle x_{2 n-1}, y_{2 n-1}\right\rangle$ have been defined so that $x_{i}<x_{j}$ if and only if $y_{i}<_{A} y_{j}$ and consider q_{n} :

Homework 5-Sols

MATH 361
(i) If $q_{n}=x_{i}$ for some $i<2 n$, define $\left\langle x_{2 n}, y_{2 n}\right\rangle=\left\langle x_{i}, y_{i}\right\rangle$.
(ii) If $q_{n}<\min \left\{x_{1}, \ldots, x_{2 n-1}\right\}$ pick $a<{ }_{A} \min \left\{y_{1}, \ldots, y_{2 n-1}\right\}$.
(iii) If $q_{n}>\max \left\{x_{1}, \ldots, x_{2 n-1}\right\}$ pick $a>_{A} \max \left\{y_{1}, \ldots, y_{2 n-1}\right\}$.
(iv) Otherwise let x_{i} be the maximal among $x_{1}, \ldots, x_{2 n-1}$ which is below q_{n} and let x_{j} be minimal among $x_{1}, \ldots, x_{2 n-1}$ which is above $q_{n}\left(\right.$ why are there such x_{i} and $\left.x_{j}\right)$. Then $x_{i}<q_{n}<x_{j}$ and pick $y_{i}<_{A} a<_{A} y_{j}$ (why can we find such a ?)

Define $\left\langle x_{2 n}, y_{2 n}\right\rangle=\left\langle q_{n}, a\right\rangle$
Fill up the definition of $\left\langle x_{2 n+1}, y_{2 n+1}\right\rangle$ considering now a_{n}. This should be very similar to the above

- Step 3: Define $f=\left\{\left\langle x_{n}, y_{n}\right\rangle \mid n \in \mathbb{N}\right\}$ Prove that $f: \mathbb{Q} \rightarrow A$ is a function. The totality should follow from the fact that $\mathbb{Q}=\left\{q_{n} \mid\right.$ $n \in \mathbb{N}\}$.
- Step 4: Prove that f is order preserving. Use the recursive definition.
- Step 5: Prove that F is a bijection (1-1 should follow in general for order preserving functions and onto follows from the fact that $\left.A=\left\{a_{n} \mid n \in \mathbb{N}\right\}\right)$

