Homework 5-Sols
MATH 361 (due October 27) October 20, 2023

Problem 1. 1. Prove that addition in Z is commutative. [Hint: use the

fact that addition in N is already known to be commutative]

Solution. By definition of addition,
[(n,m)]., +[{(n',m")]., = [(n+n',m+m")].,.
Since Addition in N is commutative,

[0 +n,m+m")]., =[(n',m')], +[(n,m)],.

2. Recall that a natural number # is identified with n = [(n,0)]., and

—n :=[(0,n)]~,. Prove that n + (-n) = 0.

Solution. 1 + (~n) = [(n,0)]-, + [0, m]-, = [(n,m)], =" [(0,0)]-,
to see (*), note that n + 0 = 0 + n and therefore (0,0) ~ (n, n) which
implies that [(0,0)]., = [{(n, n)]-,

Problem 2. Prove that for every [(n,m)]., € Q there is n’,m’ € Z such

Q
that m” > 0 and [(n, m)]., = [(n’, m")]-,.

Solution. If m > 0 just take n’ = n and m" = m. If m < 0, take n’ = —n
and m’ = —m. Then m’ > 0 and nm’ = n(-m) = (—n)m = n’m. Hence

[(n,m)]q = [{n", m")]~,.

Problem 3. Prove that (0,1) N Q with the regular order is ismorphic to
Q.[Hint: Apply Cantor’s theorem, no need to prove htat (0, 1) N Q is count-
able.]

Solution. Done in class.
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Problem 4. Prove that the union of Dedekind cuts is a Dedekind cut.

Solution. There is a typo here, this should have been that every non-
empty(!) bounded(!) union of Dedekind cuts is a Dedekind cut. Let
¥ C Rbe aset of Dedekind cuts such that € R bounded ¥ . Let us prove
that UF is a Dedekind cut. Since ¥ is non-empty, there is s € ¥, and
s # 0 since s is a D.cut. Since s U ¥, UF # 0. To see that UF is downward
closed, let x € UF and y < x. Then there is s € ¥ such that x € s. Since s
isa D.cut, y € s and therefore y € UF . To see that UF has no last element,
let x € UF, then there is s € F such that x € s. Since s is a D.cut, it had
no last element and therefore there is x < y € s. But then y € U¥ and
therefore ¥ has no last element. Finally, to see that UF is bounded, since
¥ is bounded, there is ¥ € R such that for every s € ¥, s C r. Since r is
bounded in Q, there is g € Q such that for every p € r, p < 4. Hence for
every x € UF, thereis s € ¥ such that x € s and therefore x € r and hence

x < gq. It follows that UF is bounded in Q.

Problem 5. Prove that the function f(q) = {9’ € Q | 4’ < g} is an embed-
ding of Qin R.

Solution. To see it is one-to-one, let g1 < g2, then by density of the rationals

there is g1 < g < g2, then g € f(g2) but g ¢ f(gq1). Hence f(q1) # f(g2)-

Prove that it is order preserving.
Problem 6. Recall that for x € R we define:
—x={g€Q|3s>q, —s &x}.

Prove that —x € R.
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Solution. To see that —x is not empty, take any t ¢ x (which exists since
x is bounded in Q) and consider g = —(¢t + 1). Then for s = —f, we have
that s > g and —s =t + 1 ¢ x (since otherwise also t € x by downward
closure of D.cuts). Hence g € —x. To see that it is non-empty. It is easy to
see it is dowmward closed. To see it as no last element, let g € —x, then
there is s > g such that —s ¢ x. By density of the rationals, find g < g4’ <s,
then g” € x as well as witnessed by the same s. It remains to see that —x
is bounded. Take any p € x, then —p is not in x since otherwise there is
s > p such that —s ¢ x, but —s < —p and —p € x so —s € x by downwards
closure. So —p > ¢ for every q € —x (since otherwise p < q and we already

showed that —x is downwards closed so p € —x, contradiction).

1 Additional problems

Problem 7. In this problem we are going to prove Cantor’s theorem for
dense linear orders with no least and last element. Recall that the theorem

is:
Suppose that (A, <4) is a linearly ordered set such that:
(a) Ais countable.

(b) the order <4 is dense in itself i.e. for every aj,a; € A if a1 <4 a then

there is a3 € A such that a1 <p a3 <p a.

(c) There is no least element in A, namely for every a € A thereisb € A

such that b <4 a.
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(d) There is no last element, namely, for every a € A thereis b € A such

thatb >4 a.
Then (A, <a) = (Q, <).
To prove the theorem let us construct an isomorphism f : Q — A.

e Step 1: Enumerate A = {4, | n € N} and Q = {g, | n € N}, explain
why is this possible.

e step 2: Define recursively a sequence of pairs (x,, y,) in Q X A.

(D Let (xo, yo) = (x1, 1) = (9o, a0)-
(IT) (For clarity reasons, let us do n = 2, 3).
(i) If g1 > qo pick an >4 ao.
(i) If g1 < qo pick a,, <a ao.
Explain why there must be such an a,,. Define (x2,17) =
(q1,a1). If a,, = a1, define also (x3,y3) = (q1,a1). Otherwise,
consider a1,
(i) If a1 <4 min(ag, an,) pick gx < min(qo, g1)-
(ii) If a1 <4 max(ap, an) pick qx > max(qo, 41)-
(iii) If min(ag, am) <a a1 <a max(ag, a,,) pick min(qo, q1) < qx <
max(qo, 41)-
Explain why these are the only three possibilities and why

there must be such an gx. Define (x3, y3) = g, a1).

(IlT) Supposethat(xg, Yo), ..., (X2n-1, Y2n-1) have been defined so that

x; < xjif and only if y; <4 y; and consider q,:
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(i) If g, = x; for some i < 2n, define (x2,,, y2n) = {xi, yi)-
(ii) If g, < min{xy, ..., x24—1} pick a <4 min{y, ..., you-1}.
(iii) If g, > max{x1, ..., x2n—1} pick a >4 max{y1, ..., Y2n-1}-
(iv) Otherwiselet x; be the maximal among x1, ..., X2,—1 whichis
below g, and let x; be minimal among x1, ..., x2,-1 which is

above g, (why are there such x; and x;). Then x; < g, < x;

and pick y; <a a <4 y; (why can we find such a?)

Define (x2,,, Yon) = {qn, a)
Fill up the definition of (x2,1, Y2,+1) considering now a,.. This

should be very similar to the above

e Step 3: Define f = {{(xy,yn) | n € N} Prove that f : Q — Ais a
function. The totality should follow from the fact that Q = {g, |
n € N}

e Step 4: Prove that f is order preserving. Use the recursive defini-

tion.

e Step 5: Prove that F is a bijection (1-1 should follow in general
for order preserving functions and onto follows from the fact that

A={a, |neN})



