- **Problem 1.** 1. Prove that addition in \mathbb{Z} is commutative. [Hint: use the fact that addition in \mathbb{N} is already known to be commutative]
 - 2. Recall that a natural number *n* is identified with $n = [\langle n, 0]_{\sim_Z}$ and $-n := [\langle 0, n \rangle]_{\sim_Z}$. Prove that n + (-n) = 0.

Problem 2. Prove that for every $[\langle n, m \rangle]_{\sim_Q} \in \mathbb{Q}$ there is $n', m' \in \mathbb{Z}$ such that m' > 0 and $[\langle n, m \rangle]_{\sim_Q} = [\langle n', m' \rangle]_{\sim_Q}$.

Problem 3. Prove that $(0, 1) \cap \mathbb{Q}$ with the regular order is ismorphic to \mathbb{Q} .[Hint: Apply Cantor's theorem, no need to prove htat $(0, 1) \cap \mathbb{Q}$ is countable.]

Problem 4. Prove that the union of Dedekind cuts is a Dedekind cut.

Problem 5. Prove that the function $f(q) = \{q' \in \mathbb{Q} \mid q' < q\}$ is an embedding of \mathbb{Q} in \mathbb{R} .

Problem 6. Recall that for $x \in \mathbb{R}$ we define:

$$-x = \{q \in \mathbb{Q} \mid \exists s > q, -s \notin x\}.$$

Prove that $-x \in \mathbb{R}$.

MATH 361

1 Additional problems

Problem 7. In this problem we are going to prove Cantor's theorem for dense linear orders with no least and last element. Recall that the theorem is:

Suppose that $\langle A, \langle A \rangle$ is a linearly ordered set such that:

- (a) *A* is countable.
- (b) the order <_A is dense in itself i.e. for every a₁, a₂ ∈ A if a₁ <_A a₂ then there is a₃ ∈ A such that a₁ <_A a₃ <_A a₂.
- (c) There is no least element in *A*, namely for every *a* ∈ *A* there is *b* ∈ *A* such that *b* <_A *a*.
- (d) There is no last element, namely, for every $a \in A$ there is $b \in A$ such that $b >_A a$.

Then
$$\langle A, \langle A \rangle \simeq \langle \mathbb{Q}, \langle \rangle$$
.

To prove the theorem let us construct an isomorphism $f : \mathbb{Q} \to A$.

- Step 1: Enumerate A = {a_n | n ∈ ℕ} and Q = {q_n | n ∈ ℕ}, explain why is this possible.
- step 2: Define recursively a sequence of pairs $\langle x_n, y_n \rangle$ in $\mathbb{Q} \times A$.
 - (I) Let $\langle x_0, y_0 \rangle = \langle x_1, y_1 \rangle = \langle q_0, a_0 \rangle$.
 - (II) (For clarity reasons, let us do n = 2, 3).
 - (i) If $q_1 > q_0$ pick $a_m >_A a_0$.
 - (ii) If $q_1 < q_0$ pick $a_m <_A a_0$.

Explain why there must be such an a_m . Define $\langle x_2, y_2 \rangle = \langle q_1, a_1 \rangle$. If $a_m = a_1$, define also $\langle x_3, y_3 \rangle = \langle q_1, a_1 \rangle$. Otherwise, consider a_1 ,

- (i) If $a_1 <_A \min(a_0, a_m)$ pick $q_k < \min(q_0, q_1)$.
- (ii) If $a_1 <_A \max(a_0, a_m)$ pick $q_k > \max(q_0, q_1)$.

(iii) If $\min(a_0, a_m) <_A a_1 <_A \max(a_0, a_m)$ pick $\min(q_0, q_1) < q_k < \max(q_0, q_1)$.

Explain why these are the only three possibilities and why there must be such an q_k . Define $\langle x_3, y_3 \rangle = q_k, a_1 \rangle$.

- (III) Suppose that $\langle x_0, y_0 \rangle$, ..., $\langle x_{2n-1}, y_{2n-1} \rangle$ have been defined so that $x_i < x_j$ if and only if $y_i <_A y_j$ and consider q_n :
 - (i) If $q_n = x_i$ for some i < 2n, define $\langle x_{2n}, y_{2n} \rangle = \langle x_i, y_i \rangle$.
 - (ii) If $q_n < \min\{x_1, ..., x_{2n-1}\}$ pick $a <_A \min\{y_1, ..., y_{2n-1}\}$.
 - (iii) If $q_n > \max\{x_1, ..., x_{2n-1}\}$ pick $a >_A \max\{y_1, ..., y_{2n-1}\}$.
 - (iv) Otherwise let x_i be the maximal among $x_1, ..., x_{2n-1}$ which is below q_n and let x_j be minimal among $x_1, ..., x_{2n-1}$ which is above q_n (why are there such x_i and x_j). Then $x_i < q_n < x_j$ and pick $y_i <_A a <_A y_j$ (why can we find such *a*?)

Define $\langle x_{2n}, y_{2n} \rangle = \langle q_n, a \rangle$

Fill up the definition of $\langle x_{2n+1}, y_{2n+1} \rangle$ considering now a_n . This should be very similar to the above

- Step 3: Define f = {⟨x_n, y_n⟩ | n ∈ ℕ} Prove that f : Q → A is a function. The totality should follow from the fact that Q = {q_n | n ∈ ℕ}.
- Step 4: Prove that *f* is order preserving. Use the recursive definition.
- Step 5: Prove that *F* is a bijection (1-1 should follow in general for order preserving functions and onto follows from the fact that

 $A = \{a_n \mid n \in \mathbb{N}\}\}$