Homework 6-solutions

MATH 361
(due November 4)
October 282022

Problem 1. Prove that for any $r, s \in \mathbb{R}, r \cdot s \in \mathbb{R}$. (You can use problem 6 from HW5).

Solution. The product is defined by cases:

$$
\begin{aligned}
& \text { If } x, y \geq 0 \text { then } x \cdot y=0 \cup\{p \cdot q \mid p \in x, q \in y, p, q \geq 0\} \text {.If } x, y<0 \\
& \text { then } x \cdot y=|x| \cdot|y| . \text { If } x<0 \leq y \text { or } y<0 \leq x \text { then } x \cdot y=-(|x| \cdot|y|)
\end{aligned}
$$

Once we have proven case (1), then since $|x|,|y|$ are non negative, $|x| \cdot|y|$ will be in R and by HW5 problem 6, also $-(|x| \cdot|y|)$ and we will be done. So let us prove case (1). Assume that $x, y \geq 0$ and then $x \cdot y=0 \cup\{p \cdot q \mid$ $p \in x, q \in y, p, q \geq 0\}$. It is clearly non-empty since for example $-1 \in x \cdot y$. Also, if $p^{*}, q^{*}>0$ bound x, y respectively, then for every $z \in x \cdot y$, either $z<0<p^{*} q^{*}$, or $z=p \cdot q$ for some $p, q \geq 0$ and $p \in x$ and $q \in y$. It follows that $p<p^{*}$ and $q<q^{*}$ which in turn implies (since we are dealing with positive rationals) that $p \cdot q<p^{*} \cdot q^{*}$. Hence $p^{*} \cdot q^{*}$ bounds $x \cdot y$. To see it is downward closed, let $t<z \in x \dot{y}$. if $t \leq 0$ then it is clearly in $x \cdot y$. Otherwise, $0<t \leq z$ and therefore $z=p \cdot q$ for some $p, q>0$ rationals. where $p \in x$ and $q \in y$. Let $q^{\prime}=\frac{z}{p}$. Then $z=p \cdot q^{\prime}$ and since $p \cdot q^{\prime} \leq p \cdot q$, we have that $q^{\prime} \leq q$ (since q, q^{\prime}, p are all positive). Since y is a Dedekind cut, $q^{\prime} \in y$ and therefore $z=p \cdot q^{\prime} \in x \cdot y$. Finally we need to prove that $x \cdot y$ has no last element. Let $q \in x \cdot y$. If $q<0$ then $q q<\frac{q}{2}<0$ hence $\frac{q}{2} \in x \cdot y$. If $q \geq 0$, then there are $0 \leq p_{1}, p_{2}, p_{1} \in x$ and $p_{2} \in y$ such that $q=p_{1} \cdot p_{2}$. Since x, y are dedekinf cuts, there are $p_{1}<p_{1}^{\prime} \in x$ and $p_{2}<p_{2}^{\prime} \in y$. Since they are all positive, $p_{1} \cdot p_{2}<p_{1}^{\prime} \cdot p_{2}^{\prime} \in x \cdot y$ as wanted.

Problem 2. For each of the following statements provide an appropriate function (no need to prove that your functions satisfy the required proper-

Homework 6-solutions

MATH 361
(due November 4)
October 282022
ties):

1. $\mathbb{R} \approx \mathbb{R} \backslash\{0\}$.

Solution. $f: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}$

$$
f(x)= \begin{cases}x-1 & x \in \mathbb{N}^{+} \\ x & \text { o.w }\end{cases}
$$

2. $\mathbb{Z} \approx \mathbb{N}_{\text {even }} \backslash\{0, \ldots, 2023\}$.

Solution. Define $f: \mathbb{Z} \rightarrow \mathbb{N}_{\text {even }} \backslash\{0, \ldots, 2023\}$ by

$$
f(n)= \begin{cases}2024+4|n| & n \leq 0 \\ 2022+4 n & n>0\end{cases}
$$

3. $\mathbb{N} \times \mathbb{N} \leq{ }^{\mathbb{N}}\{0,1\}$

Solution. We saw in class one example $f(\langle n, m\rangle)=00000 \ldots \underset{n^{\text {th }}}{1} \underset{\text { place }}{0 \ldots 0} \underset{n+m^{\text {th }} \text { place }}{1} 0 \ldots$
Formally, $f(\langle n, m\rangle): \mathbb{N} \rightarrow\{0,1\}$ is defined

$$
f(\langle n, m\rangle)(k)= \begin{cases}1 & k \in\{n, n+m\} \\ 0 & \text { o.w. }\end{cases}
$$

4. $\left\{f \in \mathbb{R}_{\mathbb{R}} \mid \exists i \in\{0,1\}, \forall x \in \mathbb{R} \backslash \mathbb{Q}, f(x)=i\right\} \approx\{0,1\} \times \mathbb{Q}_{\mathbb{R}}$.

Solution. Denote the set by A. $F: A \rightarrow\{0,1\} \times \mathbb{Q} \mathbb{R}$ defined by

$$
F(f)=\langle f(\sqrt{2}), f \upharpoonright \mathbb{Q}\rangle
$$

Homework 6-solutions

Problem 3. Prove that

$$
\left\{X \in P(\mathbb{N}) \mid \mathbb{N}_{\text {even }} \subseteq X\right\} \approx P(\mathbb{N})
$$

[Hint: First find a function from $P(\mathbb{N})$ to $P\left(\mathbb{N}_{\text {odd }}\right)$]
Solution. Like in the proof that $A \approx B \Rightarrow P(A) \approx P(B)$ we fix a bijection $f: \mathbb{N} \rightarrow \mathbb{N}_{\text {odd }}$, for example $f(n)=2 n+1$, then $F(X)=f^{\prime \prime} X$ is a bijection from $P(\mathbb{N})$ to $P\left(\mathbb{N}_{o d d}\right)$. Explicitly, $F(X)=\{2 n+1 \mid n \in X\}$. Now define $G: P(\mathbb{N}) \rightarrow\left\{X \in P(\mathbb{N}) \mid \mathbb{N}_{\text {even }} \subseteq X\right\}$ defined by $G(X)=\mathbb{N}_{\text {even }} \cup\{2 n+1 \mid$ $n \in \mathbb{N}\}$. Check that this is a bijection.

Problem 4. Let $C(\mathbb{R})$ be the set of all continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that

$$
C(\mathbb{R}) \leq \mathbb{Q}_{\mathbb{R}}
$$

[Hint: use that fact that \mathbb{Q} is dense in \mathbb{R} to prove that the restriction function $G: C(\mathbb{R}) \rightarrow \mathbb{Q}_{\mathbb{R}}$ defined by $G(f)=f \upharpoonright \mathbb{Q}$ is one-to-one.]

Solution. Let $G: C(\mathbb{R}) \rightarrow \mathbb{Q}_{\mathbb{R}}$ defined by $G(f)=f \upharpoonright \mathbb{Q}$, let us prove that it is one-to-one. Suppose that f, g are two continuous functions, such that $f \upharpoonright \mathbb{Q}=g \upharpoonright \mathbb{Q}$. We need to prove $f=g$. Let $x \in \mathbb{R}$, by density of the rationals we can find a sequence $\left(q_{n}\right)_{n=0}^{\infty}$ of rationals, such that $\lim _{n \rightarrow \infty} q_{n}=x$, then for each $n, f\left(q_{n}\right)=g\left(q_{n}\right)$ (since $f \upharpoonright \mathbb{Q}=g \upharpoonright \mathbb{Q}$). By continuity,

$$
f(x)=\lim _{n \rightarrow \infty} f\left(q_{n}\right)=\lim _{n \rightarrow \infty} g\left(q_{n}\right)=g(x)
$$

Problem 5. Prove that if $A \approx B$ and $C \approx D$ then $A \times C \approx B \times D$.
Solution. Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be bijections. Define $h: A \times C \rightarrow$ $B \times D h(\langle a, c)=\langle f(a), g(c)\rangle$. Prove that h is one-to-one. Let us prove for

Homework 6-solutions

MATH 361
example that h is onto. Let $\langle b, d\rangle \in B \times D$. Since f, g are onto, there are $a \in A$ and $c \in C$ such that $f(a)=b$ and $g(c)=d$. Then $\langle a, c\rangle \in A \times C$ and $h(\langle a, c\rangle)=\langle f(a), g(c)\rangle=\langle b, d\rangle$.

Problem 6. Prove that for every $\alpha<\beta$ real numbers $(\alpha, \beta) \approx(0,1)$. [Hint: First stretch/shrink $(0,1)$ to have length $\beta-\alpha$, then shift it by $+c$ as we did in class.]

Solution. Define $f:(0,1) \rightarrow(\alpha, \beta)$ by $f(x)=(\beta-\alpha) x+\alpha$. It is not hard to check that f is one-to-one and onto.

Additional problems

Problem 7. Show that $x \cdot(y+z)=x \cdot y+x \cdot x$ for every $x, y, z \in \mathbb{R}$.
Problem 8. Show that for every $n>0, \mathbb{N}^{n} \approx \mathbb{N}$. [Hint: Induction. you can $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.]

Problem 9. Show that ${ }^{\mathbb{N}}\{0,1\} \times \mathbb{N}\{0,1\} \approx \mathbb{N}\{0,1\}$. [Hint: see HW2 problem 5.]

