Homework 6

Problem 1. Prove that for any $r, s \in \mathbb{R}, r \cdot s \in \mathbb{R}$. (You can problem 6 from HW5).

Problem 2. For each of the following statements provide an appropriate function (no need to prove that your functions satisfy the required properties):

1. $\mathbb{R} \approx \mathbb{R} \backslash\{0\}$.
2. $\mathbb{Z} \approx \mathbb{N}_{\text {even }} \backslash\{0, \ldots, 2023\}$.
3. $\mathbb{N} \times \mathbb{N} \leq{ }^{\mathbb{N}}\{0,1\}$
4. $\{f \in \mathbb{R} \mathbb{R} \mid \exists i \in\{0,1\}, \forall x \in \mathbb{R} \backslash \mathbb{Q}, f(x)=i\} \approx\{0,1\} \times \mathbb{Q} \mathbb{R}$.

Problem 3. Prove that

$$
\left\{X \in P(\mathbb{N}) \mid \mathbb{N}_{\text {even }} \subseteq X\right\} \approx P(\mathbb{N})
$$

[Hint: First find a function from $P(\mathbb{N})$ to $P\left(\mathbb{N}_{\text {odd }}\right)$]
Problem 4. Let $C(\mathbb{R})$ be the set of all continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that

$$
C(\mathbb{R}) \leq \mathbb{Q}_{\mathbb{R}}
$$

[Hint: use that fact that \mathbb{Q} is dense in \mathbb{R} to prove that the restriction function $G: C(\mathbb{R}) \rightarrow \mathbb{Q} \mathbb{R}$ defined by $G(f)=f \upharpoonright \mathbb{Q}$ is one-to-one.]

Problem 5. Prove that if $A \approx B$ and $C \approx D$ then $A \times C \approx B \times D$.
Problem 6. Prove that for every $\alpha<\beta$ real numbers $(\alpha, \beta) \approx(0,1)$. [Hint: First stretch/shrink $(0,1)$ to have length $\beta-\alpha$, then shift it by $+c$ as we did in class.]

Homework 6

MATH 361

Additional problems

Problem 7. Show that $x \cdot(y+z)=x \cdot y+x \cdot x$ for every $x, y, z \in \mathbb{R}$.

Problem 8. Show that for every $n>0, \mathbb{N}^{n} \approx \mathbb{N}$. [Hint: Induction. you can $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.]

Problem 9. Show that ${ }^{\mathbb{N}}\{0,1\} \times{ }^{\mathbb{N}}\{0,1\} \approx \mathbb{N}\{0,1\}$. [Hint: see HW2 problem 5.]

