MATH 361

Problem 1. Prove that for any $r, s \in \mathbb{R}$, $r \cdot s \in \mathbb{R}$. (You can problem 6 from HW5).

Problem 2. For each of the following statements provide an appropriate function (no need to prove that your functions satisfy the required properties):

1.
$$\mathbb{R} \approx \mathbb{R} \setminus \{0\}.$$

2.
$$\mathbb{Z} \approx \mathbb{N}_{even} \setminus \{0, ..., 2023\}.$$

- 3. $\mathbb{N} \times \mathbb{N} \leq \mathbb{N} \{0, 1\}$
- $4. \ \left\{ f \in {}^{\mathbb{R}}\mathbb{R} \mid \exists i \in \{0,1\}, \ \forall x \in \mathbb{R} \setminus \mathbb{Q}, \ f(x) = i \right\} \approx \{0,1\} \times {}^{\mathbb{Q}}\mathbb{R}.$

Problem 3. Prove that

$$\left\{X \in P(\mathbb{N}) \mid \mathbb{N}_{even} \subseteq X\right\} \approx P(\mathbb{N})$$

[Hint: First find a function from $P(\mathbb{N})$ to $P(\mathbb{N}_{odd})$]

Problem 4. Let $C(\mathbb{R})$ be the set of all continuous function $f : \mathbb{R} \to \mathbb{R}$. Prove that

$$C(\mathbb{R}) \leq \mathbb{Q}\mathbb{R}$$

[Hint: use that fact that \mathbb{Q} is dense in \mathbb{R} to prove that the restriction function $G : C(\mathbb{R}) \to \mathbb{Q}\mathbb{R}$ defined by $G(f) = f \upharpoonright \mathbb{Q}$ is one-to-one.]

Problem 5. Prove that if $A \approx B$ and $C \approx D$ then $A \times C \approx B \times D$.

Problem 6. Prove that for every $\alpha < \beta$ real numbers $(\alpha, \beta) \approx (0, 1)$. [Hint: First stretch/shrink (0, 1) to have length $\beta - \alpha$, then shift it by +c as we did in class.]

Additional problems

Problem 7. Show that $x \cdot (y + z) = x \cdot y + x \cdot x$ for every $x, y, z \in \mathbb{R}$.

Problem 8. Show that for every n > 0, $\mathbb{N}^n \approx \mathbb{N}$. [Hint: Induction. you can $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.]

Problem 9. Show that \mathbb{N} {0, 1} × \mathbb{N} {0, 1} ≈ \mathbb{N} {0, 1}. [Hint: see HW2 problem 5.]