Homework 7-Solutions

MATH 361
(due November 11)
November 4, 2023

Problem 1. Prove that if E is an equivalence relation on A and let A^{\prime} be a system of representatives.

1. Prove that $A / E \approx A^{\prime}$.

Solution. Let us define $f: A^{\prime} \rightarrow A / E$ by $f(a)=[a]_{E}$. The f is one-to-one as if $a \neq a^{\prime}$ are two representatives then $a / E a^{\prime}$ which implies that

$$
f(a)=[a]_{E} \neq\left[a^{\prime}\right]_{E}=f\left(a^{\prime}\right)
$$

To see that f is onto A / E, let $[b]_{E} \in A / E$. Since A^{\prime} is a system of representatives, there is $a^{\prime} \in A$ such that $a^{\prime} E b$ and therefore $f\left(a^{\prime}\right)=$ $\left[a^{\prime}\right]_{E}=[b]_{E}$.
2. Conclude that $A / E \leq A$. [Remark: first prove it using the previous item (one line proof). Then try to prove it directly by finding an onto function from A to $A / E]$.

Solution. By (1), $A / E \approx A^{\prime}$ and since $A^{\prime} \subseteq A, A / E \approx A^{\prime} \leq A$. We can prove it directly by defining $g: A \rightarrow A / E$ by $g(a)=[a]_{E}$. This function is onto and therefore by the theorem in class $A / E \leq A$.

Problem 2. Let $A={ }^{\mathbb{N}} \mathbb{N}$, and consider the equivalence relation $R=\{\langle f, g\rangle \in$ $\left.\left(\mathbb{N}^{\mathbb{N}}\right)^{2} \mid f(0)=g(0)\right\}$ in A (no need to prove that). Prove that $A / R \approx \mathbb{N}$. [Hint: Use problem 1]

Solution. Consider the function $f_{n}(m)=\left\{\begin{array}{ll}n & m=0 \\ 0 & m>0\end{array}\right.$. Check that $\left\{f_{n} \mid n \in\right.$ $\mathbb{N}\}$ is a system of representatives. Clearly, $n \neq m$ implies that $f_{n} \neq f_{m}$ as

Homework 7-Solutions

MATH 361
(due November 11)
November 4, 2023
therefore this set is infinitely countable. Hence by the previous problem

$$
\mathbb{N} \mathbb{N} / R \approx\left\{f_{n} \mid n \in \mathbb{N}\right\} \approx \mathbb{N}
$$

Problem 3. Prove by a diagonalization argument that $\mathbb{N}<\mathbb{N}^{\mathbb{N}_{\text {even }}}$.
Solution. Find. the function $G: \mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}$ even defined by $G(n)(m)=2 n$ (namely the function G maps the natural number n to the constant function $2 n)$ is injective. Now suppose towards a contradiction that $F: \mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}$ even is subjective. Define

$$
g(n)=F(n)(n)+2
$$

Note that $F(n)(n)$ is even and therefore $F(n)(n)+2>F(n)(n)$ is also even. Hence $g: \mathbb{N} \rightarrow \mathbb{N}_{\text {even }}$ and for every $n, g(n) \neq F(n)(n)$. It follows that $g \neq F(n)$ for every n, which in turn implies that $g \notin \operatorname{Im}(F)$, contradicting F being onto.

Problem 4. Prove that the set of all matrices (of any dimension) with rational entries is countable. [Hint: a countable union of countable sets]

Solution. For every $\langle n, m\rangle \in \mathbb{N}_{+} \times \mathbb{N}_{+}$let $M_{n, m}[\mathbb{Q}]$ denote the set of all matrices of dimantion $n \times m$. You can check that $f_{n, m}: M_{n, m}[\mathbb{Q}] \rightarrow \mathbb{Q}^{n \cdot m}$ defined by

$$
f_{n, m}(A)=\left\langle(A)_{1,1}, \ldots,(A)_{1, n},(A)_{2,1}, \ldots,(A)_{2, n}, \ldots,(A)_{m, 1}, \ldots,(A)_{m, n}\right\rangle
$$

is a bijection. and therefore $M_{n, m}[\mathbb{Q}] \approx \mathbb{Q}^{m \cdot n} \approx \mathbb{N}$. Now the set

$$
M=\bigcup_{\langle n, m\rangle \in \mathbb{N}_{+} \times \mathbb{N}_{+}} M_{n, m}[\mathbb{Q}]
$$

is a countable union of countable sets, hence countable.

Homework 7-Solutions

MATH 361

Problem 5. Prove that $\{X \in P(\mathbb{N}) \mid X \approx \mathbb{N}\} \approx P(\mathbb{N})$. [Hint: Cantor-Schroeder-Bernstein]

Solution. Denote by A the set on the right hand side. The $A \subseteq P(\mathbb{N})$ and therefore $A \leq P(\mathbb{N})$. In the other direction, since $\mathbb{N} \approx \mathbb{N}_{\text {even }}$ it follows that $P(\mathbb{N}) \approx P\left(\mathbb{N}_{\text {even }}\right)$ so is suffices to find an injection $f: P\left(\mathbb{N}_{\text {even }}\right) \rightarrow A$. Define $f(X)=X \cup \mathbb{N}_{\text {odd }}$. Then f is well defined as for every $X \in P\left(\mathbb{N}_{\text {even }}\right)$,

$$
\mathbb{N}_{\text {odd }} \subseteq f(X)=X \cup \mathbb{N}_{\text {odd }} \subseteq \mathbb{N}
$$

Hence by CBS theorem, $f(X) \approx \mathbb{N}$. It follows that $f(X) \in A$. To see that f is injective, Suppose that $X_{1}, X_{2} \subseteq \mathbb{N}_{\text {even }}$ and $f\left(X_{1}\right)=f\left(X_{2}\right)$. Then

$$
\mathbb{N}_{\text {even }} \cap f\left(X_{1}\right)=\mathbb{N}_{\text {even }} \cap\left(X_{1} \cup \mathbb{N}_{\text {odd }}\right)=\mathbb{N}_{\text {even }} \cap\left(X_{2} \cup \mathbb{N}_{\text {odd }}=\mathbb{N}_{\text {even }} \cap f\left(X_{2}\right)\right.
$$

By distributivity of \cap, \cup, and since $X_{1}, X_{2} \subseteq \mathbb{N}_{\text {even }}$, we have for $i=1,2$

$$
\mathbb{N}_{\text {even }} \cap\left(X_{i} \cup \mathbb{N}_{\text {odd }}\right)=\left(\mathbb{N}_{\text {even }} \cap X_{i}\right) \cup\left(\mathbb{N}_{\text {even }} \cap \mathbb{N}_{\text {odd }}\right)=X_{i} \cup \emptyset=X_{i}
$$

Hence $X_{1}=X_{2}$.

1 Additional Problems

Problem 6. A function $f: A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$
\{a \in A \mid f(a)=b\}
$$

1. Give an example of a function which is countable-to-one but not one-to-one.

Homework 7-Solutions

MATH 361
2. Suppose that A is a set such that there exists a countable-to-one function $f: A \rightarrow \mathbb{Q}$. Prove that A is countable. [Hint: countable union of countable sets is countable]

Problem 7. On ${ }^{\mathbb{N}}\{0,1\}$, define the equivalence relation E by $f E g$ if and only if there is N such that for every $n \geq N, f(n)=g(n)$.

Prove that ${ }^{\mathbb{N}}\{0,1\} / E \approx{ }^{\mathbb{N}}\{0,1\}$. [Guidence: In order to prove that $\mathbb{N}\{0,1\} \leq \mathbb{N}\{0,1\} / E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N}=\uplus_{n \in \mathbb{N}} A_{n}$. Try to use such a decomposition to define a function F : $\mathbb{N}^{\mathbb{N}}\{0,1\} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values $f(n))$ infinitely many times]

