Homework 7

Problem 1. Prove that if E is an equivalence relation on A and let A^{\prime} be a system of representatives.

1. Prove that $A / E \approx A^{\prime}$.
2. Conclude that $A / E \leq A$. [Remark: first prove it using the previous item (one line proof). Then try to prove it directly by finding an onto function from A to $A / E]$.

Problem 2. Let $A=\mathbb{N}^{\mathbb{N}}$, and consider the equivalence relation $R=\{\langle f, g\rangle \in$ $\left.\left(\mathbb{N}^{\mathbb{N}}\right)^{2} \mid f(0)=g(0)\right\}$ in A (no need to prove that). Prove that $A / R \approx \mathbb{N}$. [Hint: Use problem 1]

Problem 3. Prov by a diagonalization argument that $\mathbb{N}<\mathbb{N}^{\mathbb{N}}$ even.
Problem 4. Prove that the set of all matrices (of any dimension) with rational entries is countable. [Hint: a countable union of countable sets]

Problem 5. Prove that $\{X \in P(\mathbb{N}) \mid X \approx \mathbb{N}\} \approx P(\mathbb{N})$. [Hint: Cantor-Schroeder-Bernstein]

1 Additional Problems

Problem 6. A function $f: A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$
\{a \in A \mid f(a)=b\}
$$

1. Give an example of a function which is countable-to-one but not one-to-one.
2. Suppose that A is a set such that there exists a countable-to-one function $f: A \rightarrow \mathbb{Q}$. Prove that A is countable. [Hint: countable union of countable sets is countable]

Problem 7. On ${ }^{\mathbb{N}}\{0,1\}$, define the equivalence relation E by $f E g$ if and only if there is N such that for every $n \geq N, f(n)=g(n)$.

Prove that ${ }^{\mathbb{N}}\{0,1\} / E \approx \mathbb{N}\{0,1\}$. [Guidence: In order to prove that $\mathbb{N}\{0,1\} \leq \mathbb{N}\{0,1\} / E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N}=\uplus_{n \in \mathbb{N}} A_{n}$. Try to use such a decomposition to define a function F : $\mathbb{N}\{0,1\} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values $f(n))$ infinitely many times]

