Problem 1. Prove that if *E* is an equivalence relation on *A* and let *A*' be a system of representatives.

1. Prove that $A/E \approx A'$.

MATH 361

2. Conclude that $A/E \leq A$. [Remark: first prove it using the previous item (one line proof). Then try to prove it directly by finding an onto function from *A* to A/E].

Problem 2. Let $A = \mathbb{N}^{\mathbb{N}}$, and consider the equivalence relation $R = \{\langle f, g \rangle \in$ $(\mathbb{N}^{\mathbb{N}})^2 \mid f(0) = g(0)\}$ in A (no need to prove that). Prove that $A/R \approx \mathbb{N}$. [Hint: Use problem 1]

Problem 3. Prov by a diagonalization argument that $\mathbb{N} \prec \mathbb{N}_{even}$.

Problem 4. Prove that the set of all matrices (of any dimension) with rational entries is countable. [Hint: a countable union of countable sets]

Problem 5. Prove that $\{X \in P(\mathbb{N}) \mid X \approx \mathbb{N}\} \approx P(\mathbb{N})$. [Hint: Cantor-Schroeder-Bernstein]

Additional Problems 1

Problem 6. A function $f : A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$\{a \in A \mid f(a) = b\}$$

1. Give an example of a function which is countable-to-one but not one-to-one.

1

2. Suppose that *A* is a set such that there exists a countable-to-one function $f : A \rightarrow \mathbb{Q}$. Prove that *A* is countable. [Hint: countable union of countable sets is countable]

Problem 7. On \mathbb{N} {0,1}, define the equivalence relation *E* by *fEg* if and only if there is *N* such that for every $n \ge N$, f(n) = g(n).

Prove that $\mathbb{N}\{0,1\}/E \approx \mathbb{N}\{0,1\}$. [Guidence: In order to prove that $\mathbb{N}\{0,1\} \leq \mathbb{N}\{0,1\}/E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N} = \bigoplus_{n \in \mathbb{N}} A_n$. Try to use such a decomposition to define a function F: $\mathbb{N}\{0,1\} \rightarrow \mathbb{N}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values f(n)) infinitely many times]