MATH 361

(due November 20) Nover

November 11, 2022

Problem 1. Prove that $\{X \in P(\mathbb{N}) \mid X \text{ is infinite}\} \approx P(\mathbb{N})$

Solution. See HW7 Problem 4.

Problem 2. Determine the cardinality $(\aleph_0, 2^{\aleph_0}, 2^{2^{\aleph_0}}, ...)$ of the following sets (submit only 3 of the items):

We give crushed solutions, with the main ideas of all the function. Of course you should have more details in your solutions.

(1)
$$A = \{ f \in \mathbb{N} \{ 0, 1 \} \mid \forall n \in \mathbb{N}_{even}, f(n) = 1 \}.$$

Solution. $|A| = 2^{\aleph_0}$. Indeed, $A \subseteq \mathbb{N}\{0,1\}$ and therefore $A \leq \mathbb{N}\{0,1\}$ and the function $F : \mathbb{N}_{odd}\{0,1\} \to A$ defined by $F(g)(n) = \begin{cases} f(n) & n \in \mathbb{N}_{odd} \\ 1 & n \in \mathbb{N}_{even} \end{cases}$ is injective (check that it is injective and well-defined!). Since $\mathbb{N}_{odd}\{0,1\} \approx \mathbb{N}\{0,1\}$ we conclude that

$$^{\mathbb{N}}\{0,1\} \leq A$$

By CSB, $A \approx \{0, 1\}^{\mathbb{N}}$, so $|A| = 2^{\aleph_0}$.

(2) $B = \{X \in P(\mathbb{N}) \mid X \text{ contains no consecutive numbers}\}.$

Solution. $P(\mathbb{N}_{even}) \subseteq B \subseteq P(\mathbb{N})$ hence $|B| = 2^{\aleph_0}$.

(3) The set of all arithmetic progressions of integers. [Recall: an arithmetic progression of integers is a sequence $(a_n)_{n=0}^{\infty}$ such that for some *d*, for any *n*, difference $a_{n+1} - a_n = d$.]

61 (due November 20) November 11, 2022

Solution. Let *AP* by the set of arithmetic progressions. Any arithmetic progression is uniquely determined (namely, there is a one-to-one function) by (a_0, d) . Hence

$$AP \leq \mathbb{N} \times \mathbb{N}$$

. Show that *AP* is infinite and deduce that $|AP| = \aleph_0$.

(4) The set of all circles in the plain.[Given a point $p = \langle x_0, y_0 \rangle \in \mathbb{R}^2$ ("the center") and $r \in (0, \infty)$ ("the radious"), the circle $C = C(p, r) = \{\langle x, y \rangle \in \mathbb{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 = r^2\}$. A]

Solution. A circle is uniquely determined by the center and the radius, hence there is a bijection with $\mathbb{R} \times \mathbb{R}$. It follows that there are 2^{\aleph_0} -many such circles.

(5) The set of all circles *C* in \mathbb{R}^2 which intersect the *x*-axis at two points $\langle 0, q_1 \rangle, \langle 0, q_2 \rangle$, where $q_1, q_2 \in \mathbb{Q}$.

Solution. Two points on the circle determines at most two circles (solve the equations!) hence the set is a countable union (over $\langle q_1, q_2 \rangle \in \mathbb{Q}$) of sets of size at most 2 hence countable. It follows that $|C| = \aleph_0$.

Problem 3. A straight line in the plain is a set of the following forms:

- $L_c = \{c\} \times \mathbb{R}$ for some $c \in \mathbb{R}$ (lines which are parallel to the *y*-axis).
- *L_{a,b}* = {⟨*x*, *y*⟩ ∈ ℝ | *y* = *ax* + *b*} for some *a*, *b* ∈ ℝ. (lines which are not parallel to the *y*-axis)

Answer the following questions:

(due November 20) November 11, 2022

1. What is the cardinality of the set of all lines in the plain?

Solution. We need to compute the cardinality of $\mathcal{L} = \{L_c \mid c \in \mathbb{R}\} \cup \{L_{a,b} \mid a, b \in \mathbb{R}\}$. Clearly there is an injection from \mathbb{R} to \mathcal{L} (for example $f(r) = L_r$). So $\mathbb{R} \leq \mathcal{L}$. For the other direction, we can define an onto function from \mathbb{R}^3 to \mathcal{L} by

$$g(\langle a, b, c \rangle) = \begin{cases} L_{a,b} & c = 0\\ L_a & c \neq 0 \end{cases}$$

Hence $|\mathcal{L}| = 2^{\aleph_0}$

2. Prove that there is a line of the form $L_{a,b}$ which contains no rational point, namely $L \cap \mathbb{Q} \times \mathbb{Q} = \emptyset$.

Solution. $L_{\sqrt{2},0}$ is such a line, since if $\langle x, y \rangle \in L_{\sqrt{2},0}$ then $y = \sqrt{2}x$ and if x is rational then y cannot be rational (otherwise $\sqrt{2}$ would have been rational).

3. (A typo in the original formulation of the problem) Prove that every line of the form L_{a,b} for a > 0 contains an irrational point, namely L ∩ (ℝ \ Q) × (ℝ \ Q) ≠ Ø.

Solution. Just otherwise, for every $\langle x, y \rangle \in L_{a,b}$, wither $x \in \mathbb{Q}$ or $y \in \mathbb{Q}$, So $L \subseteq A \cup B$ where $A = \{\langle q, aq + b \rangle \mid q \in \mathbb{Q}\}$ and $B = \{\langle \frac{q-b}{a}, a \rangle \mid q \in \mathbb{Q}\}$. Both A, B are clearly countable and therefore $A \cup B$ is countable. It follows that $L_{a,b}$ is countable, contradiction.

Problem 4. A function $f : \mathbb{N} \to \mathbb{N}$ is increasingly monotone, if for every *n*, f(n) < f(n+1). Prove that the set *A* of all increasingly monotone functions

 $f : \mathbb{N} \to \mathbb{N}$ has cardinality 2^{\aleph_0} . [Hint: CSB. One direction is easy. For the other, given a function $f : \mathbb{N} \to \mathbb{N}_+$, define $F(f)(n) = \sum_{k=0}^n f(k)$.]

Solution. Let *M* be the set of monotone functions, then $M \subseteq {}^{\mathbb{N}}\mathbb{N}$ which we saw in class has cardinality 2^{\aleph_0} . For the other direction, for any function $f : \mathbb{N} \to \mathbb{N}_+, F(f)(n) = \sum_{k=0}^n f(k)$. We claim that $F : {}^{\mathbb{N}}\mathbb{N}_+ \to M$ is injective and clearly, ${}^{\mathbb{N}}\mathbb{N}_+$ has cardinality 2^{\aleph_0} in which case we will be done. To see this, first note that

$$F(f)(n+1) = \sum_{k=0}^{n+1} f(k) = \sum_{k=0}^{n} f(k) + f(n+1) > \sum_{k=0}^{n} f(k) = F(f)(n)$$

Hence $F(f) \in M$. To see it is one-to-one, suppose that F(f) = F(g). We prove by induction that for every n, f(n) = g(n). Indeed, f(0) = F(f)(0) = F(g)(0) = g(0). Suppose this holds up to n, and let us prove that f(n + 1) = g(n + 1).

$$F(g)(n+1) = \sum_{k=0}^{n+1} g(k) = F(f)(n+1) = \sum_{k=0}^{n+1} f(k)$$

Hence

(*)
$$\sum_{k=0}^{n} g(k) + g(n+1) = \sum_{k=0}^{n} f(k) + f(n+1)$$

By the induction hypothesis $\sum_{k=0}^{n} g(k) = \sum_{k=0}^{n} f(k)$, so we get that from (*) that f(n + 1) = g(n + 1).

Problem 5. Prove that $\aleph_0^{(2^{\aleph_0})} = 2^{(2^{\aleph_0})}$.

Solution.

$$2^{(2^{\aleph_0})} \le^{\max} \aleph_0^{(2^{\aleph_0})} \le (2^{\aleph_0})^{(2^{\aleph_0})} = 2^{(\aleph_0 \cdot 2^{\aleph_0})} = 2^{(2^{\aleph_0})}$$

By CBS we conclude the equiality.

(due November 20) November 11, 2022

Problem 6. Prove that $\kappa^{\lambda+\sigma} = \kappa^{\lambda} \cdot \kappa^{\sigma}$.

Solution. I will just give the function. Suppose that $|A| = \kappa$, $|B| = \lambda$ and $|C| = \sigma$, such that $B \cap C = \emptyset$. Define $F : {}^{B \cup C}A \to {}^{B}A \times {}^{C}A$ by

$$F(h) = \langle h \upharpoonright B, h \upharpoonright C \rangle$$

Additional problems- preparation for midterm 1 Π

Problem 7. Compute the cardinality of the set of all function $f : \mathbb{N} \to \mathbb{N}$ $\{0,1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that f(n) = f(n+1) = 0.

Problem 8. Consider the relation *E* om $\mathbb{N}\mathbb{N}$ by *fEg* if and only if for every $n \ge 100, f(n) = g(n).$

- 1. Prove that *E* is an equivalence relation.
- 2. Compute the cardinality of \mathbb{N}/E .

Problem 9. Let \leq_A , \leq_B be two weak linear orderings of *A*, *B* (resp.), where *A*, *B* are disjoint. We define $\leq_A + \leq_B$ which we abbreviate by \leq_+ on *AB* as follows:

$$x \leq_+ y \leftrightarrow (x, y \in A \land x \leq_A y) \lor (x, y \in B \land x \leq_B y) \lor (x \in A \land y \in B)$$

- 1. Prove that \leq_+ is a linear ordering of $A \cup B$.
- 2. Let $\mathbb{N}^* = \{0\} \times \mathbb{N}$ and define \leq^* on \mathbb{N}^* by $(0, n) \leq^* (0, m)$ if and only if $m \leq n$. Prove that \leq^* is a linear ordering of \mathbb{N}^* .

Homework 8-Solutions

MATH 361	(due November 20)	November 11, 2022

3. Prove that $\langle \mathbb{N}^* \cup \mathbb{N}, \leq^* + \leq \rangle \simeq \langle \mathbb{Z}, \leq \rangle$.

Problem 10. Define recursively $A_0 = \emptyset$ and $A_{n+1} = P(A_n)$. Prove by induction that for every $n, A_n \subseteq A_{n+1}$.

Problem 11. Prove that the intersection of finitely many Dedekind cuts is a Dedekind cut.

Problem 12. Prove that if $x \in \mathbb{R}$ and $y \in \mathbb{R}$ is positive (namely 0 < y), then x < x + y.