Homework 8-Solutions

MATH 361

Problem 1. Prove that $\{X \in P(\mathbb{N}) \mid X$ is infinite $\} \approx P(\mathbb{N})$

Solution. See HW7 Problem 4.
Problem 2. Determine the cardinality $\left(\boldsymbol{\aleph}_{0}, 2^{\aleph_{0}}, 2^{2^{\aleph_{0}}}, \ldots\right)$ of the following sets (submit only 3 of the items):

We give crushed solutions, with the main ideas of all the function. Of course you should have more details in your solutions.
(1) $A=\left\{f \in{ }^{\mathbb{N}}\{0,1\} \mid \forall n \in \mathbb{N}_{\text {even }}, f(n)=1\right\}$.

Solution. $|A|=2^{\mathbb{N}_{0}}$. Indeed, $A \subseteq{ }^{\mathbb{N}}\{0,1\}$ and therefore $A \leq{ }^{\mathbb{N}}\{0,1\}$ and the function $F: \mathbb{N}_{\text {odd }}\{0,1\} \rightarrow A$ defined by $F(g)(n)= \begin{cases}f(n) & n \in \mathbb{N}_{\text {odd }} \\ 1 & n \in \mathbb{N}_{\text {even }}\end{cases}$ is injective (check that it is injective and well-defined!). Since $\mathbb{N}_{\text {odd }}\{0,1\} \approx$ ${ }^{\mathbb{N}}\{0,1\}$ we conclude that

$$
{ }^{\mathbb{N}}\{0,1\} \leq A
$$

By CSB, $A \approx\{0,1\}^{\mathbb{N}}$, so $|A|=2^{\aleph_{0}}$.
(2) $B=\{X \in P(\mathbb{N}) \mid X$ contains no consecutive numbers $\}$.

Solution. $P\left(\mathbb{N}_{\text {even }}\right) \subseteq B \subseteq P(\mathbb{N})$ hence $|B|=2^{\aleph_{0}}$.
(3) The set of all arithmetic progressions of integers. [Recall: an arithmetic progression of integers is a sequence $\left(a_{n}\right)_{n=0}^{\infty}$ such that for some d, for any n, difference $a_{n+1}-a_{n}=d$.]

Homework 8-Solutions

MATH 361

Solution. Let $A P$ by the set of arithmetic progressions. Any arithmetic progression is uniquely determined (namely, there is a one-to-one function) by $\left(a_{0}, d\right)$. Hence

$$
A P \leq \mathbb{N} \times \mathbb{N}
$$

. Show that $A P$ is infinite and deduce that $|A P|=\boldsymbol{\aleph}_{0}$.
(4) The set of all circles in the plain.[Given a point $p=\left\langle x_{0}, y_{0}\right\rangle \in \mathbb{R}^{2}$ ("the center") and $r \in(0, \infty)$ ("the radious"), the circle $C=C(p, r)=$ $\left\{\langle x, y\rangle \in \mathbb{R}^{2} \mid\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}\right\}$. A]

Solution. A circle is uniquely determined by the center and the radius, hence there is a bijection with $\mathbb{R} \times \mathbb{R}$. It follows that there are $2^{\aleph_{0}}$-many such circles.
(5) The set of all circles C in \mathbb{R}^{2} which intersect the x-axis at two points $\left\langle 0, q_{1}\right\rangle,\left\langle 0, q_{2}\right\rangle$, where $q_{1}, q_{2} \in \mathbb{Q}$.

Solution. Two points on the circle determines at most two circles (solve the equations!) hence the set is a countable union (over $\left\langle q_{1}, q_{2}\right\rangle \in \mathbb{Q}$) of sets of size at most 2 hence countable. It follows that $|C|=\boldsymbol{\aleph}_{0}$.

Problem 3. A straight line in the plain is a set of the following forms:

- $L_{c}=\{c\} \times \mathbb{R}$ for some $c \in \mathbb{R}$ (lines which are parallel to the y-axis).
- $L_{a, b}=\{\langle x, y\rangle \in \mathbb{R} \mid y=a x+b\}$ for some $a, b \in \mathbb{R}$. (lines which are not parallel to the y-axis)

Answer the following questions:

Homework 8-Solutions

MATH 361
(due November 20)
November 11, 2022

1. What is the cardinality of the set of all lines in the plain?

Solution. We need to compute the cardinality of $\mathcal{L}=\left\{L_{c} \mid c \in\right.$ $\mathbb{R}\} \cup\left\{L_{a, b} \mid a, b \in \mathbb{R}\right\}$. Clearly there is an injection from \mathbb{R} to \mathcal{L} (for example $\left.f(r)=L_{r}\right)$. So $\mathbb{R} \leq \mathcal{L}$. For the other direction, we can define an onto function from \mathbb{R}^{3} to \mathcal{L} by

$$
g(\langle a, b, c\rangle)= \begin{cases}L_{a, b} & c=0 \\ L_{a} & c \neq 0\end{cases}
$$

Hence $|\mathcal{L}|=2^{\aleph_{0}}$
2. Prove that there is a line of the form $L_{a, b}$ which contains no rational point, namely $L \cap \mathbb{Q} \times \mathbb{Q}=\emptyset$.

Solution. $L_{\sqrt{2}, 0}$ is such a line, since if $\langle x, y\rangle \in L_{\sqrt{2}, 0}$ then $y=\sqrt{2} x$ and if x is rational then y cannot be rational (otherwise $\sqrt{2}$ would have been rational).
3. (A typo in the original formulation of the problem) Prove that every line of the form $L_{a, b}$ for $a>0$ contains an irrational point, namely $L \cap(\mathbb{R} \backslash \mathbb{Q}) \times(\mathbb{R} \backslash \mathbb{Q}) \neq \emptyset$.

Solution. Just otherwise, for every $\langle x, y\rangle \in L_{a, b}$, wither $x \in \mathbb{Q}$ or $y \in \mathbb{Q}$, So $L \subseteq A \cup B$ where $A=\{\langle q, a q+b\rangle \mid q \in \mathbb{Q}\}$ and $B=$ $\left\{\left.\left\langle\frac{q-b}{a}, a\right\rangle \right\rvert\, q \in \mathbb{Q}\right\}$. Both A, B are clearly countable and therefore $A \cup B$ is countable. It follows that $L_{a, b}$ is countable, contradiction.

Problem 4. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasingly monotone, if for every n, $f(n)<f(n+1)$. Prove that the set A of all increasingly monotone functions

Homework 8-Solutions

MATH 361
(due November 20)
November 11, 2022
$f: \mathbb{N} \rightarrow \mathbb{N}$ has cardinality $2^{\aleph_{0}}$. [Hint: CSB. One direction is easy. For the other, given a function $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$, define $F(f)(n)=\sum_{k=0}^{n} f(k)$.]

Solution. Let M be the set of monotone functions, then $M \subseteq \mathbb{N} \mathbb{N}$ which we saw in class has cardinality $2^{\aleph_{0}}$. For the other direction, for any function $f: \mathbb{N} \rightarrow \mathbb{N}_{+}, F(f)(n)=\sum_{k=0}^{n} f(k)$. We claim that $F: \mathbb{N}_{\mathbb{N}_{+}} \rightarrow M$ is injective and clearly, $\mathbb{N}^{\mathbb{N}_{+}}$has cardinality $2^{\boldsymbol{N}_{0}}$ in which case we will be done. To see this, first note that

$$
F(f)(n+1)=\sum_{k=0}^{n+1} f(k)=\sum_{k=0}^{n} f(k)+f(n+1)>\sum_{k=0}^{n} f(k)=F(f)(n)
$$

Hence $F(f) \in M$. To see it is one-to-one, suppose that $F(f)=F(g)$. We prove by induction that for every $n, f(n)=g(n)$. Indeed, $f(0)=F(f)(0)=$ $F(g)(0)=g(0)$. Suppose this holds up to n, and let us prove that $f(n+1)=$ $g(n+1)$.

$$
F(g)(n+1)=\sum_{k=0}^{n+1} g(k)=F(f)(n+1)=\sum_{k=0}^{n+1} f(k)
$$

Hence

$$
\text { (*) } \sum_{k=0}^{n} g(k)+g(n+1)=\sum_{k=0}^{n} f(k)+f(n+1)
$$

By the induction hypothesis $\sum_{k=0}^{n} g(k)=\sum_{k=0}^{n} f(k)$, so we get that from (*) that $f(n+1)=g(n+1)$.

Problem 5. Prove that $\aleph_{0}^{\left(2^{\aleph_{0}}\right)}=2^{\left(2^{\aleph_{0}}\right)}$.

Solution.

$$
2^{\left(2^{\aleph_{0}}\right)} \leq^{\text {mon }} \boldsymbol{\aleph}_{0}^{\left(2^{\aleph_{0}}\right)} \leq\left(2^{\aleph_{0}}\right)^{\left(2^{\aleph_{0}}\right)}=2^{\left(\aleph_{0} \cdot 2^{\aleph_{0}}\right)}=2^{\left(2^{\aleph_{0}}\right)}
$$

By CBS we conclude the equiality.

Homework 8-Solutions

MATH 361

Problem 6. Prove that $\kappa^{\lambda+\sigma}=\kappa^{\lambda} \cdot \kappa^{\sigma}$.
Solution. I will just give the function. Suppose that $|A|=\kappa,|B|=\lambda$ and $|C|=\sigma$, such that $B \cap C=\emptyset$. Define $F:{ }^{B \cup C} A \rightarrow{ }^{B} A \times{ }^{C} A$ by

$$
F(h)=\langle h \upharpoonright B, h \upharpoonright C\rangle
$$

1 Additional problems- preparation for midterm II

Problem 7. Compute the cardinality of the set of all function $f: \mathbb{N} \rightarrow$ $\{0,1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that $f(n)=f(n+1)=0$.

Problem 8. Consider the relation E om $\mathbb{N}^{\mathbb{N}} \mathbb{N}$ by $f E g$ if and only if for every $n \geq 100, f(n)=g(n)$.

1. Prove that E is an equivalence relation.
2. Compute the cardinality of $\mathbb{N}^{\mathbb{N}} / E$.

Problem 9. Let \leq_{A}, \leq_{B} be two weak linear orderings of A, B (resp.), where A, B are disjoint. We define $\leq_{A}+\leq_{B}$ which we abbreviate by \leq_{+}on $A B$ as follows:

$$
x \leq_{+} y \leftrightarrow\left(x, y \in A \wedge x \leq_{A} y\right) \vee\left(x, y \in B \wedge x \leq_{B} y\right) \vee(x \in A \wedge y \in B)
$$

1. Prove that \leq_{+}is a linear ordering of $A \cup B$.
2. Let $\mathbb{N}^{*}=\{0\} \times \mathbb{N}$ and define \leq^{*} on \mathbb{N}^{*} by $\langle 0, n\rangle \leq^{*}\langle 0, m\rangle$ if and only if $m \leq n$. Prove that \leq^{*} is a linear ordering of \mathbb{N}^{*}.

Homework 8-Solutions

MATH 361
3. Prove that $\left\langle\mathbb{N}^{*} \cup \mathbb{N}, \leq^{*}+\leq\right\rangle \simeq\langle\mathbb{Z}, \leq\rangle$.

Problem 10. Define recursively $A_{0}=\emptyset$ and $A_{n+1}=P\left(A_{n}\right)$. Prove by induction that for every $n, A_{n} \subseteq A_{n+1}$.

Problem 11. Prove that the intersection of finitely many Dedekind cuts is a Dedekind cut.

Problem 12. Prove that if $x \in \mathbb{R}$ and $y \in \mathbb{R}$ is positive (namely $0<y$), then $x<x+y$.

