Homework 8

Problem 1. Prove that $\{X \in P(\mathbb{N}) \mid X$ is infinite $\} \simeq P(\mathbb{N})$
Problem 2. Determine the cardinality ($\left.\boldsymbol{\aleph}_{0}, 2^{\boldsymbol{N}_{0}}, 2^{2^{\aleph_{0}}}, \ldots\right)$ of the following sets (submit only 3 of the items):
(1) $A=\left\{f \in{ }^{\mathbb{N}}\{0,1\} \mid \forall n \in \mathbb{N}_{\text {even }}, f(n)=1\right\}$.
(2) $B=\{X \in P(\mathbb{N}) \mid X$ contains no consecutive numbers $\}$.
(3) The set of all arithmetic progressions of integers. [Recall: an arithmetic progression of integers is a sequence $\left(a_{n}\right)_{n=0}^{\infty}$ such that for some d, for any n, difference $a_{n+1}-a_{n}=d$.]
(4) The set of all circles in the plain.[Given a point $p=\left\langle x_{0}, y_{0}\right\rangle \in \mathbb{R}^{2}$ ("the center") and $r \in(0, \infty)$ ("the radious"), the circle $C=C(p, r)=$ $\left\{\langle x, y\rangle \in \mathbb{R}^{2} \mid\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}\right\}$. A]
(5) The set of all circles C in \mathbb{R}^{2} which intersect the x-axis at two points $\left\langle 0, q_{1}\right\rangle,\left\langle 0, q_{2}\right\rangle$, where $q_{1}, q_{2} \in \mathbb{Q}$.

Problem 3. A straight line in the plain is a set of the following forms:

- $L_{c}=\{c\} \times \mathbb{R}$ for some $c \in \mathbb{R}$ (lines which are parallel to the y-axis).
- $L_{a, b}=\{\langle x, y\rangle \in \mathbb{R} \mid y=a x+b\}$ for some $a, b \in \mathbb{R}$. (lines which are not parallel to the y-axis)

Answer the following questions:

1. What is the cardinality of the set of all lines in the plain?
2. Prove that there is a line L which contains no rational point, namely $L \cap \mathbb{Q} \times \mathbb{Q}=\emptyset$.
3. Prove that every line L contains an irrational point, namely $L \cap(\mathbb{R} \backslash$ $\mathbb{Q}) \times(\mathbb{R} \backslash \mathbb{Q}) \neq \emptyset$.

Problem 4. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasingly monotone, if for every n, $f(n)<f(n+1)$. Prove that the set A of all increasingly monotone functions $f: \mathbb{N} \rightarrow \mathbb{N}$ has cardinality $2^{\aleph_{0}}$. [Hint: CSB. One direction is easy. For the other, given a function $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$, define $F(f)(n)=\sum_{k=0}^{n} f(n)$.]
Problem 5. Prove that $\boldsymbol{\aleph}_{0}^{\left(2^{\aleph_{0}}\right)}=2^{\left(2^{\aleph_{0}}\right)}$.
Problem 6. Prove that $\kappa^{\lambda+\sigma}=\kappa^{\lambda} \cdot \kappa^{\sigma}$.

1 Additional problems- preparation for midterm

II

Problem 7. Compute the cardinality of the set of all function $f: \mathbb{N} \rightarrow$ $\{0,1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that $f(n)=f(n+1)=0$.

Problem 8. Consider the relation E om ${ }^{\mathbb{N}} \mathbb{N}$ by $f E g$ if and only if for every $n \geq 100, f(n)=g(n)$.

1. Prove that E is an equivalence relation.
2. Compute the cardinality of ${ }^{\mathbb{N}} \mathbb{N} / E$.

Problem 9. Let \leq_{A}, \leq_{B} be two weak linear orderings of A, B (resp.), where A, B are disjoint. We define $\leq_{A}+\leq_{B}$ which we abbreviate by \leq_{+}on $A B$ as follows:

$$
x \leq_{+} y \leftrightarrow\left(x, y \in A \wedge x \leq_{A} y\right) \vee\left(x, y \in B \wedge x \leq_{B} y\right) \vee(x \in A \wedge y \in B)
$$

1. Prove that \leq_{+}is a linear ordering of $A \cup B$.
2. Let $\mathbb{N}^{*}=\{0\} \times \mathbb{N}$ and define \leq^{*} on \mathbb{N}^{*} by $\langle 0, n\rangle \leq^{*}\langle 0, m\rangle$ if and only if $m \leq n$. Prove that \leq^{*} is a linear ordering of \mathbb{N}^{*}.
3. Prove that $\left\langle\mathbb{N}^{*} \cup \mathbb{N}, \leq^{*}+\leq\right\rangle \simeq\langle\mathbb{Z}, \leq\rangle$.

Problem 10. Define recursively $A_{0}=\emptyset$ and $A_{n+1}=P\left(A_{n}\right)$. Prove by induction that for every $n, A_{n} \subseteq A_{n+1}$.

Problem 11. Prove that the intersection of finitely many Dedekind cuts is a Dedekind cut.

Problem 12. Prove that if $x \in \mathbb{R}$ and $y \in \mathbb{R}$ is positive (namely $0<y$), then $x<x+y$.

