Problem 1. Prove that $\{X \in P(\mathbb{N}) \mid X \text{ is infinite}\} \simeq P(\mathbb{N})$

Problem 2. Determine the cardinality $(\aleph_0, 2^{\aleph_0}, 2^{2^{\aleph_0}}, ...)$ of the following sets (submit only 3 of the items):

- (1) $A = \{ f \in \mathbb{N} \{ 0, 1 \} \mid \forall n \in \mathbb{N}_{even}, f(n) = 1 \}.$
- (2) $B = \{X \in P(\mathbb{N}) \mid X \text{ contains no consecutive numbers}\}.$
- (3) The set of all arithmetic progressions of integers. [Recall: an arithmetic progression of integers is a sequence $(a_n)_{n=0}^{\infty}$ such that for some *d*, for any *n*, difference $a_{n+1} a_n = d$.]
- (4) The set of all circles in the plain.[Given a point $p = \langle x_0, y_0 \rangle \in \mathbb{R}^2$ ("the center") and $r \in (0, \infty)$ ("the radious"), the circle $C = C(p, r) = \{\langle x, y \rangle \in \mathbb{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 = r^2\}$. A]
- (5) The set of all circles *C* in \mathbb{R}^2 which intersect the *x*-axis at two points $\langle 0, q_1 \rangle, \langle 0, q_2 \rangle$, where $q_1, q_2 \in \mathbb{Q}$.

Problem 3. A straight line in the plain is a set of the following forms:

- $L_c = \{c\} \times \mathbb{R}$ for some $c \in \mathbb{R}$ (lines which are parallel to the *y*-axis).
- *L_{a,b}* = {⟨*x*, *y*⟩ ∈ ℝ | *y* = *ax* + *b*} for some *a*, *b* ∈ ℝ. (lines which are not parallel to the *y*-axis)

Answer the following questions:

- 1. What is the cardinality of the set of all lines in the plain?
- 2. Prove that there is a line *L* which contains no rational point, namely $L \cap \mathbb{Q} \times \mathbb{Q} = \emptyset$.

3. Prove that every line *L* contains an irrational point, namely $L \cap (\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$.

Problem 4. A function $f : \mathbb{N} \to \mathbb{N}$ is increasingly monotone, if for every n, f(n) < f(n+1). Prove that the set A of all increasingly monotone functions $f : \mathbb{N} \to \mathbb{N}$ has cardinality 2^{\aleph_0} . [Hint: CSB. One direction is easy. For the other, given a function $f : \mathbb{N} \to \mathbb{N}_+$, define $F(f)(n) = \sum_{k=0}^n f(n)$.]

Problem 5. Prove that $\aleph_0^{(2^{\aleph_0})} = 2^{(2^{\aleph_0})}$.

Problem 6. Prove that $\kappa^{\lambda+\sigma} = \kappa^{\lambda} \cdot \kappa^{\sigma}$.

1 Additional problems- preparation for midterm II

Problem 7. Compute the cardinality of the set of all function $f : \mathbb{N} \rightarrow \{0, 1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that f(n) = f(n + 1) = 0.

Problem 8. Consider the relation *E* om $\mathbb{N}\mathbb{N}$ by *fEg* if and only if for every $n \ge 100$, f(n) = g(n).

- 1. Prove that *E* is an equivalence relation.
- 2. Compute the cardinality of \mathbb{N}/E .

Problem 9. Let \leq_A , \leq_B be two weak linear orderings of *A*, *B* (resp.), where *A*, *B* are disjoint. We define $\leq_A + \leq_B$ which we abbreviate by \leq_+ on *AB* as follows:

$$x \leq_+ y \leftrightarrow (x, y \in A \land x \leq_A y) \lor (x, y \in B \land x \leq_B y) \lor (x \in A \land y \in B)$$

- 1. Prove that \leq_+ is a linear ordering of $A \cup B$.
- 2. Let $\mathbb{N}^* = \{0\} \times \mathbb{N}$ and define \leq^* on \mathbb{N}^* by $\langle 0, n \rangle \leq^* \langle 0, m \rangle$ if and only if $m \leq n$. Prove that \leq^* is a linear ordering of \mathbb{N}^* .
- 3. Prove that $\langle \mathbb{N}^* \cup \mathbb{N}, \leq^* + \leq \rangle \simeq \langle \mathbb{Z}, \leq \rangle$.

Problem 10. Define recursively $A_0 = \emptyset$ and $A_{n+1} = P(A_n)$. Prove by induction that for every $n, A_n \subseteq A_{n+1}$.

Problem 11. Prove that the intersection of finitely many Dedekind cuts is a Dedekind cut.

Problem 12. Prove that if $x \in \mathbb{R}$ and $y \in \mathbb{R}$ is positive (namely 0 < y), then x < x + y.