Problem 1. In this exercise we consider the statement α : "Suppose that \mathcal{A} is a set of open pairwise disjoint intervals in \mathbb{R} , then $|\mathcal{A}| \leq \aleph_0$."

- (1) Prove α : for every $\emptyset \neq I \in \mathcal{A}$ there is a rational $q_I \in I \cap \mathbb{Q}$ (why?), the define $f(I) = q_I$ and prove that f is injective.
- (2) Did you use the axiom of choice in the previous proof? if so, where did you use it?

Problem 2. Show that if *A* is countable then there is a choice function for $P(A) \setminus \{\emptyset\}$

Problem 3. Let SRP be the principle that for every set *A* and for every equivalence relation *E* on *A*, there exists a system of representatives.

Prove that the Axiom of Choice is equivalent to SRP.

1 Additional problems

Problem 4. The principle of Dependent choice (DC) is the following: For every total relation *R* on *A* there is a sequence $(x_n)_{n \in \mathbb{N}} \subseteq A$ such that for every *n*. $x_n R x_{n+1}$. Prove that DC follows from *AC*.

Remark: It is known that DC does not imply AC. For more information about DC see Link