MidTerm I- Set Theory fall 2023

MATH 361
(Instructor: Tom Benhamou)
October 06

Instructions

The midterm duration is 1 hour and 20 min , and consists of 4 problems, each worth 26 points (The maximal grade is 100). The answers to the problems should be written in the designated areas.

Problems

Problem 1. Prove that if $A \cup B=A \cup C$ and $A \cap B=A \cap C$ then $B=C$.

Solution: Assume $A \cup B=A \cup C$ and $A \cap B=A \cap C$. Le us rove by double inclusion that $B=C$.
$\subseteq:$ Let $b \in B$ and let us split into cases:
(a) If $b \in A$, then $b \in A \cap B$ and since $A \cap B=A \cap C, b \in A \cap C$. In particular $b \in C$.
(b) If $b \notin A$ then since $b \in B$ it follows that $b \in A \cup B$. Since $A \cup B=A \cup C, b \in A \cup C$. Since we assumed that $b \in A$ it follows that $b \in C$.

In any case $b \in C$.
\supseteq The other direction is symmetric.

MidTerm I- Set Theory fall 2023

MATH 361
(Instructor: Tom Benhamou)
October 06

Problem 2. Suppose that $f: A \rightarrow B, g: B \rightarrow C$ are any functions such that f is onto and g is not injective. Prove that $g \circ f$ is not injective.

Solution: Suppose that $f: A \rightarrow B, g: B \rightarrow C$ are any functions such that f is onto and g is not injective. This means that there are $b_{1} \neq b_{2}$ in B such that $g\left(b_{1}\right)=g\left(b_{2}\right)$. Since f is onto, there are $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=b_{1}$ and $f\left(a_{2}\right)=b_{2}$. Since f is univalent and $b_{1} \neq b_{2}$, it follows that $a_{1} \neq a_{2}$. It follows that $g \circ f\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g\left(b_{1}\right)=g\left(b_{2}\right)=g\left(f\left(a_{2}\right)\right)=$ $g \circ f\left(a_{2}\right)$, hence $g \circ f$ is not injective.

MidTerm I- Set Theory fall 2023

MATH 361
(Instructor: Tom Benhamou)
October 06

Problem 3. For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of C by f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

Prove that if $f: A \rightarrow B$ is injection and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C]
$$

Solution:

\subseteq : Let $b \in f^{\prime \prime} A \backslash f^{\prime \prime} C$. Since $b \in f^{\prime \prime} A$, there is $a \in A$ such that $b=f(a)$. Since $b \notin f^{\prime \prime} C, a \notin C$. It follows that $a \in A \backslash C$. We conclude that $b=f(a) \in f^{\prime \prime}[A \backslash C]$.
\supseteq : For the other direction, let $x \in f^{\prime \prime}[A \backslash C]$. Then there is $a \in A \backslash C$ such that $f(a)=x$. By the definition of difference, we would like to prove that $x \in f^{\prime \prime} A$ and $x \notin f^{\prime \prime} C$. Since $a \in A$, it follows that $x=f(a) \in f^{\prime \prime} A$. Suppose towards a contradiction that there is $c \in C$ such that $f(c)=x$. Then $f(c)=f(a)$. Since f is injective, $c=a$. However $c \in C$ and $a \notin C$, contradiction. Hence $x \in f^{\prime \prime} C$.

MidTerm I- Set Theory fall 2023

Problem 4. On the set $\mathbb{R}^{\mathbb{R}}$ we define the relation:

$$
f \sim g \text { if and only if } \exists \epsilon>0, f \upharpoonright(0, \epsilon)=g \upharpoonright(0, \epsilon)
$$

Prove that \sim is an equivalence relation on $\mathbb{R}^{\mathbb{R}}$.
Solution: Let us prove that \sim is reflexive, symmetrice and transitive.

1. Reflexive: Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Then for $\epsilon=1$ we have that $f \upharpoonright(0,1)=f \upharpoonright$ $(0,1)$ and therefore there exists $\epsilon>0$ such that $f \upharpoonright(0, \epsilon)=f \upharpoonright(0, \epsilon)$ which implies that $f \sim f$.
2. Symmetric: Suppose that $f \sim g$, then there is $\epsilon>0$ such that $f \upharpoonright$ $(0, \epsilon)=g \upharpoonright(0, \epsilon)$. Since equality is symmetric, $g \upharpoonright(0, \epsilon)=f \upharpoonright(0, \epsilon)$ and therfore $g \sim f$.
3. Suppose that $f \sim g$ and $g \sim h$. Then there are $\epsilon_{1}, \epsilon_{2}>0$ such that $f \upharpoonright$ $\left(0, \epsilon_{1}\right)=g \upharpoonright\left(0, \epsilon_{1}\right)$ and $g \upharpoonright\left(0, \epsilon_{2}\right)=h \upharpoonright\left(0, \epsilon_{2}\right)$. Take $\epsilon_{3}=\min \left(\epsilon_{1}, \epsilon_{2}\right)$. Then $\left(0, \epsilon_{3}\right) \subseteq\left(0, \epsilon_{1}\right)$ and therefore $f \upharpoonright\left(0, \epsilon_{3}\right)=g \upharpoonright\left(0, \epsilon_{3}\right)$. Also, $\left(0, \epsilon_{3}\right) \subseteq\left(0, \epsilon_{2}\right)$ and therefore $g \upharpoonright\left(0, \epsilon_{3}\right)=h \upharpoonright\left(0, \epsilon_{3}\right)$. We conclude that $f \upharpoonright\left(0, \epsilon_{3}\right)=h \upharpoonright\left(0, \epsilon_{3}\right)$ and so $f \sim h$.
