Problem 1. Prove or disprove the following items:
(a) $\{1,-1\} \subseteq \mathbb{Z}$.
(b) $7 \in\left\{n \in \mathbb{N}\left|\left|n^{2}-n-3\right| \leq 5\right\}\right.$.
(c) $27 \in\left\{n^{2}-n-3 \mid n \in \mathbb{N}\right\}$.
(d) $-3 \in\left\{n^{2}-3 \mid n \in \mathbb{N}_{+}\right\}$.
(e) $\{1,-1\} \in\{X \subseteq \mathbb{Z} \mid 2 \in X\}$.
(f) $\{r \in \mathbb{R} \mid \exists q \in \mathbb{Q} \cdot r+q \in \mathbb{Q}\}=\mathbb{Q}$.
(g) $\{-1,0,1\} \subseteq\left\{x \in \mathbb{N}\left|x^{2}=|x|\right\}\right.$. (Here $|x|$ is the absolute valure of the real number x)
(h) $\{x \in \mathbb{R} \mid\{x, x+1\} \subseteq[0,2)\} \subseteq[0,1]$.
(i) $\mathbb{Q} \subseteq\{x \in \mathbb{R}||\{x, x+\sqrt{2}\} \cap \mathbb{Q}|=1\}$

Problem 2. Prove that if A, B, C are sets then

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Problem 3. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that
(a) $A \cap \bigcup \mathcal{B}=\bigcup\{A \cap B \mid B \in \mathcal{B}\}$.
(b) $A \backslash \cap \mathcal{B}=\bigcup\{A \backslash B \mid B \in \mathcal{B}\}$.

Problem 4. Let A, B be sets. prove that for any $a \in A$ and $b \in B,\langle a, b\rangle \in$ $P(P(A \cup B))$. Conclude formally from the axioms that there is a unique set D which equals $A \times B$. Namely, prove that:
(a) There is a set D with the property that for every $x, x \in D$ if and only if $x=\langle a, b\rangle$ for some $a \in A$ and $b \in B$.
(b) If D, D^{\prime} both have the property described in (a) then $D=D^{\prime}$.

Problem 5. Prove that for every sets A, B, C,

$$
A \times(B \cap C)=(A \times B) \cap(A \times C) .
$$

Additional problems:

Problem 6. Prove implications $(3) \Rightarrow(4)$ and $(4) \Rightarrow(1)$ of Proposition 2.9.
Problem 7. Let X and Y be sets.
(i) Prove that $Y \backslash(Y \backslash X)=X \cap Y$.
(ii) Prove that $X \subseteq Y$ if and only if $X \cup Y=Y$.
(iii) Deduce that $X \subseteq Y$ if and only if $Y \backslash(Y \backslash X)=X$.

Problem 8. Compute the following sets. No proof required.

1. $\{a+b: a \in\{0,5\}, b \in\{2,4\}\} \backslash\{7,10\}$.
2. $(1,3) \cup[2,4)$
3. $\mathbb{Z} \cap[0, \infty)$

Homework 1

MATH 361
(due September 22) September 15, 2022
4. $\mathbb{N}_{\text {even }} \Delta \mathbb{N}_{+}$

Problem 9. Prove that for every two sets A, B the following are equivalent:

- $A \subseteq B$.
- $P(A \cup B)=P(B)$.
- $P(A) \subseteq P(B)$.
[Remember: You are allowed to use the propositions and statements which appear in the class notes.]

