Problem 1. Prove or disprove the following items:

- (a) $\{1, -1\} \subseteq \mathbb{Z}$.
- (b) $7 \in \{n \in \mathbb{N} \mid |n^2 n 3| \le 5\}.$
- (c) $27 \in \{n^2 n 3 \mid n \in \mathbb{N}\}.$
- (d) $-3 \in \{n^2 3 \mid n \in \mathbb{N}_+\}.$
- (e) $\{1, -1\} \in \{X \subseteq \mathbb{Z} \mid 2 \in X\}.$
- (f) $\{r \in \mathbb{R} \mid \exists q \in \mathbb{Q}. r + q \in \mathbb{Q}\} = \mathbb{Q}.$
- (g) $\{-1, 0, 1\} \subseteq \{x \in \mathbb{N} \mid x^2 = |x|\}$. (Here |x| is the absolute value of the real number x)
- (h) $\{x \in \mathbb{R} \mid \{x, x+1\} \subseteq [0, 2)\} \subseteq [0, 1].$
- (i) $\mathbb{Q} \subseteq \{x \in \mathbb{R} \mid |\{x, x + \sqrt{2}\} \cap \mathbb{Q}| = 1\}$

Problem 2. Prove that if *A*, *B*, *C* are sets then

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Problem 3. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that

(a) $A \cap \bigcup \mathcal{B} = \bigcup \{A \cap B \mid B \in \mathcal{B}\}.$

(b) $A \setminus \bigcap \mathcal{B} = \bigcup \{A \setminus B \mid B \in \mathcal{B}\}.$

Problem 4. Let *A*, *B* be sets. prove that for any $a \in A$ and $b \in B$, $\langle a, b \rangle \in P(P(A \cup B))$. Conclude formally from the axioms that there is a unique set *D* which equals $A \times B$. Namely, prove that:

- (a) There is a set *D* with the property that for every $x, x \in D$ if and only if $x = \langle a, b \rangle$ for some $a \in A$ and $b \in B$.
- (b) If D, D' both have the property described in (*a*) then D = D'.

Problem 5. Prove that for every sets *A*, *B*, *C*,

$$A \times (B \cap C) = (A \times B) \cap (A \times C).$$

Additional problems:

Problem 6. Prove implications $(3) \Rightarrow (4)$ and $(4) \Rightarrow (1)$ of Proposition 2.9.

Problem 7. Let *X* and *Y* be sets.

- (i) Prove that $Y \setminus (Y \setminus X) = X \cap Y$.
- (ii) Prove that $X \subseteq Y$ if and only if $X \cup Y = Y$.
- (iii) Deduce that $X \subseteq Y$ if and only if $Y \setminus (Y \setminus X) = X$.

Problem 8. Compute the following sets. No proof required.

- 1. $\left\{a + b : a \in \{0, 5\}, b \in \{2, 4\}\right\} \setminus \{7, 10\}.$ 2. $(1, 3) \cup [2, 4)$
- 3. $\mathbb{Z} \cap [0, \infty)$

Homework 1

MATH 361

(due September 22)

September 15, 2022

4. $\mathbb{N}_{even}\Delta\mathbb{N}_+$

Problem 9. Prove that for every two sets *A*, *B* the following are equivalent:

- $A \subseteq B$.
- $P(A \cup B) = P(B)$.
- $P(A) \subseteq P(B)$.

[Remember: You are allowed to use the propositions and statements which appear in the class notes.]