Problem 1. Prove that if *A*, *B*, *C* are sets then

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Solution. We prove a double inclusion:

- <u>⊆</u>: Let $x \in A \cup (B \cap C)$. The by the definition of union either $x \in A$ or $x \in B \cap C$. We split into cases:
 - (a) If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ by the definition of union. By definition of intersection $x \in (A \cup B) \cap (A \cup C)$.
 - (b) If x ∈ B ∩ C, then by definition on intersection x ∈ B and x ∈ C. Hence x ∈ A ∪ B and x ∈ A ∪ C by the definition of union and again by definition of intersection x ∈ (A ∪ B) ∩ (A ∩ C).

In any case $x \in (A \cup B) \cap (A \cup C)$.

- <u>⊇</u>: Let $x \in (A \cup B) \cap (A \cup C)$. Then by definition of intersection $x \in A \cup B$ and $x \in A \cup C$. LEt us split into cases:
 - (a) If $x \in A$, then by definition of union $x \in A \cup (B \cap C)$.
 - (b) If $x \notin A$, since $x \in A \cup B$ and $x \in A \cup C$, then by definition of union $x \in B$ and $x \in C$. By definition of intersection $x \in B \cap C$. By definition of union $x \in A \cup (B \cap C)$.

Problem 2. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that

- (a) $A \cap \bigcup \mathcal{B} = \bigcup \{A \cap B \mid B \in \mathcal{B}\}.$
- (b) $A \setminus \cap \mathcal{B} = \bigcup \{A \setminus B \mid B \in \mathcal{B}\}.$

Solution. We will prove item (1) as an example: By double inclusion:

- ⊆: Let $x \in A \cap \bigcup \mathcal{B}$. By definition of intersection $x \in A$ and $x \in \bigcup \mathcal{B}$. By definition of generalized union, there is $B_0 \in \mathcal{B}$ such that $x \in B_0$. It follows that $x \in A \cap B_0$. Since $A \cap B_0 \in \{A \cap B \mid B \in \mathcal{B}\}$, and by the definition of generalized union, $x \in \bigcup \{A \cap B \mid B \in \mathcal{B}\}$.
- ⊇: Let $x \in \bigcup \{A \cap B \mid B \in \mathcal{B}\}$. Then by the definition of generalized union, there is $B \in \mathcal{B}$ such that $x \in A \cap B$. By definition of intersection $x \in A$ and $x \in B$. It follows the $x \in \bigcup \mathcal{B}$ and by definition on intersection $x \in A \cap \bigcup \mathcal{B}$.

Problem 3. For a function $f : A \rightarrow B$ and $C \subseteq A$ define the *pointwise image* of *C* by *f* as

$$f''C = \{f(c) \mid c \in C\}$$

(a) Prove that if $f : A \rightarrow B$ is a function and $C \subseteq A$, then

$$(f''A) \setminus (f''C) \subseteq f''[A \setminus C].$$

(b) Give an example of a function $f : A \rightarrow B$ and a subset $C \subseteq A$ such that

$$(f''A) \setminus (f''C) \neq f''[A \setminus C].$$

(c) Prove that if $f : A \rightarrow B$ is an injection and $C \subseteq A$, then

$$(f''A) \setminus (f''C) = f''[A \setminus C].$$

- **Solution.** (a) Let $b \in f''A \setminus f''C$. Since $b \in f''A$, there is $a \in A$ such that b = f(a). Since $b \notin f''C$, $a \notin C$. It follows that $a \in A \setminus C$. We conclude that $b = f(a) \in f''[A \setminus C]$.
- (b) Let $f : \{1, 2\} \rightarrow \{1, 2\}$ defined by f(1) = f(2) = 1. Let $A = \{1, 2\}$, and $C = \{1\}$. Then

$$f''\{1,2\} = \{1\}, \ f''\{1\} = \{1\} \Longrightarrow f''\{1,2\} \setminus f''\{1\} = \emptyset$$

Also

$$\{1,2\} \setminus \{1\} = \{2\} \Longrightarrow f''[\{1,2\} \setminus \{1\}] = \{1\}$$

Hence

$$f''\{1,2\} \setminus f''\{1\} = \emptyset \neq \{1\} = f''[\{1,2\} \setminus \{1\}]$$

(c) Suppose that *f* is injective and we would like to prove that

$$(f''A) \setminus (f''C) = f''[A \setminus C].$$

By a double inclusion. In section (*a*) we proved \subseteq . For the other direction, let $x \in f''[A \setminus C]$. Then there is $a \in A \setminus C$ such that f(a) = x. By the definition of difference, we would like to prove that $x \in f''A$ and $x \notin f''C$. Since $a \in A$, it follows that $x = f(a) \in f''A$. Suppose towards a contradiction that there is $c \in C$ such that f(c) = x. Then f(c) = f(a). Since f is injective, c = a. However $c \in C$ and $a \notin C$, contradiction. Hence $x \in f''C$.

Problem 4. Recall that the indicator function $\chi_A : P(A) \to {}^{A}\{0,1\}$ is defined by $(\chi_A(B))(a) = \begin{cases} 1 & a \in B \\ & & \\ 0 & a \notin B \end{cases}$. Prove that χ_A is injective.

3

Problem 5. Prove that the interleaving function $F : (^{\mathbb{N}}\{0,1\})^2 \to ^{\mathbb{N}}\{0,1\}$ defined by

$$F(\langle f, g \rangle)(n) = \begin{cases} f(\frac{n}{2}) & n \in \mathbb{N}_{even} \\ g(\frac{n-1}{2}) & n \in \mathbb{N}_{odd} \end{cases}$$

is one-to-one and onto. Prove that it is invertable and find F^{-1} .

Solution. To see that *F* is one-to-one suppose that $F_1 := F(\langle f_1, g_1 \rangle) = F(\langle f_2, g_2 \rangle) =: F_2$. let us prove for example that $f_1 = f_2$ (as the proof the $g_1 = g_2$ is the same). Let $n \in \mathbb{N}$. Since $F_1 = F_2$, $F_1(2n) = F_2(2n)$. Hence, by definition of *F*, $F_1(2n) = f_1(\frac{2n}{2}) = f_1(n)$ and $F_2(2n) = f_2(n)$, hence $f_1(n) = f_2(n)$. It follows by equality of functions that $f_1 = f_2$. To that *F* is onto, given a function $h : \mathbb{N} \to \{0, 1\}$, define f(n) = h(2n) and g(n) = h(2n + 1), then it is not hard to check that $F(\langle f, g \rangle) = h$. This also gives the definition of F^{-1} . Indeed $F^{-1}(h) = \langle f_h, g_h \rangle$, where $f_h(n) = h(2n)$ and $g_h(n) = h(2n + 1)$.

Problem 6. Prove the ollowing statements:

- (a) $\left\{ f \in \mathbb{R} \mathbb{R} \mid \exists i \in \{0, 1\}, \forall x \in \mathbb{R} \setminus \mathbb{Q}, f(x) = i \right\} \approx \{0, 1\} \times \mathbb{Q} \mathbb{R}.$
- (b) If $A \approx B$ then $P(A) \approx P(B)$

Solution. (a) Define the set of the left side by *A* and let us just provide the bijection: $G : A \to \{0, 1\} \times \mathbb{Q}\mathbb{R}$ defined by

$$G(f) = \langle f(\sqrt{2}), f \upharpoonright \mathbb{Q} \rangle$$

(b) Let $f : A \to B$ be a bijection and define a new function using f, as follows, $F : P(A) \to P(B)$ defined by F(X) = f[X]. Let us prove that F is invertible.

4

- 1. We will first show that *F* is injective. Let $X_1, X_2 \in P(A)$ such that $F(X_1) = F(X_2)$. Equivalently, $\{f(x)|x \in X_1\} = \{f(x)|x \in X_2\}$. We want to show that $X_1 = X_2$. So let $x_1 \in X_1$. We want to show that $x_1 \in X_2$. Denote by $y = f(X_1)$, then by the replacement principle, there exists $y \in F(X_1)$. Since $F(X_1) = F(X_2)$, $y \in F(X_2)$ and therefore, by the replacement principle, there is $x_2 \in X_2$ such that $y = f(x_2)$. We conclude that $f(x_2) = y = f(x_1)$. Since *f* is injective, $x_1 = x_2$. So, $x_1 \in X_2$ and thus $X_1 \subseteq X_2$. The inclusion $X_2 \subseteq X_1$ is symmetric. We conclude that $X_1 = X_2$ and therefore, *f* is injective.
- 2. We will now show that *F* is surjective. Let $Y \in P(B)$. Then $Y \subseteq B$. We want to show that Y = F(X) for some $X \subseteq A$. Let $X = \{x \in A | f(x) \in Y\}$ and let us prove set equality F(X) = Y. Let $y \in Y$, since *f* is surjective, there exists $x \in A$ such that f(x) = y. Since $y \in Y$, $x \in X$ and therefore $y = f(x) \in f''X = f(X)$. For the other direction, let $y \in F(X)$. Then there is $x \in X$ such that f(x) = y. By definition of $x, y = f(x) \in Y$. Hence F(X) = Y and therefore *F* is surjective. So *F* is a bijection, and therefore *F* is invertible.