Problem 1. Prove that if A, B, C are sets then

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution. We prove a double inclusion:
\subseteq : Let $x \in A \cup(B \cap C)$. The by the definition of union either $x \in A$ or $x \in B \cap C$. We split into cases:
(a) If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ by the definition of union. By definition of intersection $x \in(A \cup B) \cap(A \cup C)$.
(b) If $x \in B \cap C$, then by definition on intersection $x \in B$ and $x \in C$. Hence $x \in A \cup B$ and $x \in A \cup C$ by the definition of union and again by definition of intersection $x \in(A \cup B) \cap(A \cap C)$.

In any case $x \in(A \cup B) \cap(A \cup C)$.
〇: Let $x \in(A \cup B) \cap(A \cup C)$. Then by definition of intersection $x \in A \cup B$ and $x \in A \cup C$. LEt us split into cases:
(a) If $x \in A$, then by definition of union $x \in A \cup(B \cap C)$.
(b) If $x \notin A$, since $x \in A \cup B$ and $x \in A \cup C$, then by definition of union $x \in B$ and $x \in C$. By definition of intersection $x \in B \cap C$. By definition of union $x \in A \cup(B \cap C)$.

Problem 2. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that
(a) $A \cap \bigcup \mathcal{B}=\bigcup\{A \cap B \mid B \in \mathcal{B}\}$.
(b) $A \backslash \cap \mathcal{B}=\bigcup\{A \backslash B \mid B \in \mathcal{B}\}$.

Solution. We will prove item (1) as an example: By double inclusion:
$\subseteq:$ Let $x \in A \cap \bigcup \mathcal{B}$. By definition of intersection $x \in A$ and $x \in \bigcup \mathcal{B}$. By definition of generalized union, there is $B_{0} \in \mathcal{B}$ such that $x \in B_{0}$. It follows that $x \in A \cap B_{0}$. Since $A \cap B_{0} \in\{A \cap B \mid B \in \mathcal{B}\}$, and by the definition of generalized union, $x \in \bigcup\{A \cap B \mid B \in \mathcal{B}\}$.

〇: Let $x \in \bigcup\{A \cap B \mid B \in \mathcal{B}\}$. Then by the definition of generalized union, there is $B \in \mathcal{B}$ such that $x \in A \cap B$. By definition of intersection $x \in A$ and $x \in B$. It follows the $x \in \bigcup \mathcal{B}$ and by definition on intersection $x \in A \cap \bigcup \mathcal{B}$.

Problem 3. For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of C by f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

(a) Prove that if $f: A \rightarrow B$ is a function and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \subseteq f^{\prime \prime}[A \backslash C]
$$

(b) Give an example of a function $f: A \rightarrow B$ and a subset $C \subseteq A$ such that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \neq f^{\prime \prime}[A \backslash C]
$$

(c) Prove that if $f: A \rightarrow B$ is an injection and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C] .
$$

Solution. (a) Let $b \in f^{\prime \prime} A \backslash f^{\prime \prime} C$. Since $b \in f^{\prime \prime} A$, there is $a \in A$ such that $b=f(a)$. Since $b \notin f^{\prime \prime} C, a \notin C$. It follows that $a \in A \backslash C$. We conclude that $b=f(a) \in f^{\prime \prime}[A \backslash C]$.
(b) Let $f:\{1,2\} \rightarrow\{1,2\}$ defined by $f(1)=f(2)=1$. Let $A=\{1,2\}$, and $C=\{1\}$. Then

$$
f^{\prime \prime}\{1,2\}=\{1\}, f^{\prime \prime}\{1\}=\{1\} \Rightarrow f^{\prime \prime}\{1,2\} \backslash f^{\prime \prime}\{1\}=\emptyset
$$

Also

$$
\{1,2\} \backslash\{1\}=\{2\} \Rightarrow f^{\prime \prime}[\{1,2\} \backslash\{1\}]=\{1\}
$$

Hence

$$
f^{\prime \prime}\{1,2\} \backslash f^{\prime \prime}\{1\}=\emptyset \neq\{1\}=f^{\prime \prime}[\{1,2\} \backslash\{1\}] .
$$

(c) Suppose that f is injective and we would like to prove that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C]
$$

By a double inclusion. In section (a) we proved \subseteq. For the other direction, let $x \in f^{\prime \prime}[A \backslash C]$. Then there is $a \in A \backslash C$ such that $f(a)=x$. By the definition of difference, we would like to prove that $x \in f^{\prime \prime} A$ and $x \notin f^{\prime \prime} C$. Since $a \in A$, it follows that $x=f(a) \in f^{\prime \prime} A$. Suppose towards a contradiction that there is $c \in C$ such that $f(c)=x$. Then $f(c)=f(a)$. Since f is injective, $c=a$. However $c \in C$ and $a \notin C$, contradiction. Hence $x \in f^{\prime \prime} C$.

Problem 4. Recall that the indicator function $\chi_{A}: P(A) \rightarrow{ }^{A}\{0,1\}$ is defined by $\left(\chi_{A}(B)\right)(a)=\left\{\begin{array}{ll}1 & a \in B \\ 0 & a \notin B\end{array}\right.$. Prove that χ_{A} is injective.

Problem 5. Prove that the interleaving function $F:\left({ }^{\mathbb{N}}\{0,1\}\right)^{2} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ defined by

$$
F(\langle f, g\rangle)(n)= \begin{cases}f\left(\frac{n}{2}\right) & n \in \mathbb{N}_{\text {even }} \\ g\left(\frac{n-1}{2}\right) & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

is one-to-one and onto. Prove that it is invertable and find F^{-1}.
Solution. To see that F is one-to-one suppose that $F_{1}:=F\left(\left\langle f_{1}, g_{1}\right\rangle\right)=$ $F\left(\left\langle f_{2}, g_{2}\right\rangle\right)=: F_{2}$. let us prove for example that $f_{1}=f_{2}$ (as the proof the $g_{1}=g_{2}$ is the same). Let $n \in \mathbb{N}$. Since $F_{1}=F_{2}, F_{1}(2 n)=F_{2}(2 n)$. Hence, by definition of $F, F_{1}(2 n)=f_{1}\left(\frac{2 n}{2}\right)=f_{1}(n)$ and $F_{2}(2 n)=f_{2}(n)$, hence $f_{1}(n)=f_{2}(n)$. It follows by equality of functions that $f_{1}=f_{2}$. To that F is onto, given a function $h: \mathbb{N} \rightarrow\{0,1\}$, define $f(n)=h(2 n)$ and $g(n)=h(2 n+1)$, then it is not hard to check that $F(\langle f, g\rangle)=h$. This also gives the definition of F^{-1}. Indeed $F^{-1}(h)=\left\langle f_{h}, g_{h}\right\rangle$, where $f_{h}(n)=h(2 n)$ and $g_{h}(n)=h(2 n+1)$.

Problem 6. Prove the ollowing statements:
(a) $\left\{f \in \mathbb{R}_{\mathbb{R}} \mid \exists i \in\{0,1\}, \forall x \in \mathbb{R} \backslash \mathbb{Q}, f(x)=i\right\} \approx\{0,1\} \times \mathbb{Q} \mathbb{R}$.
(b) If $A \approx B$ then $P(A) \approx P(B)$

Solution. (a) Define the set of the left side by A and let us just provide the bijection: $G: A \rightarrow\{0,1\} \times{ }^{\mathbb{Q}} \mathbb{R}$ defined by

$$
G(f)=\langle f(\sqrt{2}), f \upharpoonright \mathbb{Q}\rangle
$$

(b) Let $f: A \rightarrow B$ be a bijection and define a new function using f, as follows, $F: P(A) \rightarrow P(B)$ defined by $F(X)=f[X]$. Let us prove that F is invertible.

1. We will first show that F is injective. Let $X_{1}, X_{2} \in P(A)$ such that $F\left(X_{1}\right)=F\left(X_{2}\right)$. Equivalently, $\left\{f(x) \mid x \in X_{1}\right\}=\left\{f(x) \mid x \in X_{2}\right\}$. We want to show that $X_{1}=X_{2}$. So let $x_{1} \in X_{1}$. We want to show that $x_{1} \in X_{2}$. Denote by $y=f\left(X_{1}\right)$, then by the replacement principle, there exists $y \in F\left(X_{1}\right)$. Since $F\left(X_{1}\right)=F\left(X_{2}\right), y \in F\left(X_{2}\right)$ and therefore, by the replacement principle, there is $x_{2} \in X_{2}$ such that $y=f\left(x_{2}\right)$. We conclude that $f\left(x_{2}\right)=y=f\left(x_{1}\right)$. Since f is injective, $x_{1}=x_{2}$. So, $x_{1} \in X_{2}$ and thus $X_{1} \subseteq X_{2}$. The inclusion $X_{2} \subseteq X_{1}$ is symmetric. We conclude that $X_{1}=X_{2}$ and therefore, f is injective.
2. We will now show that F is surjective. Let $Y \in P(B)$. Then $Y \subseteq B$. We want to show that $Y=F(X)$ for some $X \subseteq A$. Let $X=\{x \in$ $A \mid f(x) \in Y\}$ and let us prove set equality $F(X)=Y$. Let $y \in Y$, since f is surjective, there exists $x \in A$ such that $f(x)=y$. Since $y \in Y$, $x \in X$ and therefore $y=f(x) \in f^{\prime \prime} X=f(X)$. For the other direction, let $y \in F(X)$. Then there is $x \in X$ such that $f(x)=y$. By definition of $x, y=f(x) \in Y$. Hence $F(X)=Y$ and therefore F is surjective. So F is a bijection, and therefore F is invertible.
