Homework 1

MATH 461

Problem 1 (optional). Prove that if A, B, C are sets then

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Problem 2. Let \mathcal{B} be a nonempty set of sets and let A be any set. Show that
(a) $A \cap \bigcup \mathcal{B}=\bigcup\{A \cap B \mid B \in \mathcal{B}\}$.
(b) $A \backslash \cap \mathcal{B}=\bigcup\{A \backslash B \mid B \in \mathcal{B}\}$.

Problem 3 (optional). For a function $f: A \rightarrow B$ and $C \subseteq A$ define the pointwise image of C by f as

$$
f^{\prime \prime} C=\{f(c) \mid c \in C\}
$$

(a) Prove that if $f: A \rightarrow B$ is a function and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \subseteq f^{\prime \prime}[A \backslash C] .
$$

(b) Give an example of a function $f: A \rightarrow B$ and a subset $C \subseteq A$ such that

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right) \neq f^{\prime \prime}[A \backslash C] .
$$

(c) Prove that if $f: A \rightarrow B$ is an injection and $C \subseteq A$, then

$$
\left(f^{\prime \prime} A\right) \backslash\left(f^{\prime \prime} C\right)=f^{\prime \prime}[A \backslash C]
$$

Problem 4. Recall that the indicator function $\chi_{A}: P(A) \rightarrow^{A}\{0,1\}$ is defined by $\left(\chi_{A}(B)\right)(a)=\left\{\begin{array}{ll}1 & a \in B \\ 0 & a \notin B\end{array}\right.$. Prove that χ_{A} is injective.

Homework 1

MATH 461

Problem 5. Prove that the interleaving function $F:\left({ }^{\mathbb{N}}\{0,1\}\right)^{2} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ defined by

$$
F(\langle f, g\rangle)(n)= \begin{cases}f\left(\frac{n}{2}\right) & n \in \mathbb{N}_{\text {even }} \\ g\left(\frac{n-1}{2}\right) & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

is one-to-one and onto. Prove that it is invertable and find F^{-1}.

Problem 6. Prove the following statements:
(a) $\left\{f \in \mathbb{R}^{\mathbb{R}} \mid \exists i \in\{0,1\}, \forall x \in \mathbb{R} \backslash \mathbb{Q}, f(x)=i\right\} \approx\{0,1\} \times \mathbb{Q} \mathbb{R}$.
(b) If $A \approx B$ then $P(A) \approx P(B)$

