Problem 1. Prove that a set of Γ WFF is consistent iff every finite subset $\Gamma_0 \subseteq \Gamma$ is consistent.

Solution. If Γ is consistent i.e. does not prove a contradiction. Let $\Gamma_0 \subseteq \Gamma$, since any Γ_0 -deduction is also a Γ -deduction, Γ_0 cannot prove a contradiction and therefore Γ_0 is consistent. in the other direction, suppose that Γ is inconsistent and let β be such that $\Gamma \vdash \beta$ and $\Gamma \vdash \neg \beta$. Then there are deductions $\langle \alpha_1, ..., \alpha_n = \beta \rangle$ and $\langle \beta_1, ..., \beta_n = \neg \beta \rangle$ from Γ . These deductions only involve finitely many formulas from Γ and therefore there is $\Gamma_0 \subseteq \Gamma$ finite such that $\langle \alpha_1, ..., \alpha_n = \beta \rangle$ and $\langle \beta_1, ..., \beta_n = \neg \beta \rangle$ are Γ_0 -deductions, namely $\Gamma_0 \Vdash \beta$ and $\Gamma_0 \Vdash \neg \beta$.

Problem 2. Using Problem 1, conclude the compactness theorem from the completeness theorem [Hint: Use the equivalent formulation we presented in class for the completeness theorem].

Solution. Proven in class.

Problem 3. (i) Prove by induction on the length of the WFF ϕ that if y does not occur in ϕ , then x is substitutable for y in ϕ_y^x and $(\phi_y^x)_x^y = \phi$. **Solution.** First note this for any term without the variable y: If t = z then $z \neq y$ (since y does note occur in t). If $z \neq x$, then $(z_y^x)_x^y = (z)_x^y = z$ and if z = x then $(z_y^x)_x^y = y_x^y = x = z$. This is similar for constants (as there are no variables in constants) and for terms $t = f(t_1, ..., t_n)$ we have that y does not occur in t iff y does not occur in $t_1, ..., t_n$ and in particular by the induction hypothesis

$$(f((t_1, ..., t_n))_y^x)_x^y = f(((t_1)_y^x)_x^y, ..., (t_n))_y^x)_x^y = f(t_1, ..., t_n)$$

For atomic formulas, $t_1 = t_2$ without y, y does not appear in t_1 , t_2 and therefore $((t_1 = t_2)_y^x)_x^y$ is the same as $((t_1)_y^x)_x^y = ((t_2)_y^x)_x^y$ which by the previous part is $t_1 = t_2$. For $(P(t_1, ..., t_n))_y^x)_x^y$ this is similar. The general case is also similar.

(ii) Give an example of a WFF ϕ such that $(\phi_y^x)_x^y \neq \phi$.

Solution take ϕ to be y = x.