MATH 461

Problem 1. Let us prove the substitution Lemma we used to prove the Completeness Theorem: For any \mathcal{L} -structure \mathfrak{a} , any ϕ , any term *t* which is substitutable for *x* in ϕ , and any $s : V \to A^{\mathfrak{a}}$,

$$\mathfrak{a} \models \phi_t^x[s] \text{ iff } \mathfrak{a} \models \phi[s(x|\bar{s}(t))]$$

(a) First show by induction on the complexity of a term t_0 , that if x is any variable in t_0 , and t_1 is any other terms, then $\bar{s}((t_0)_{t_1}^x) = (\bar{s}(x|\bar{s}(t_1)))(t_0)$. **Solution.** By induction on the complexity of t_0 , if $t_0 = x$ then $(t_0)_{t_1}^x = t_1$ and $\bar{s}(t_1) = (\bar{s}(x|\bar{s}(t_1))(t_0))$. If $t_0 = z$ for a variable different from x, then $(t_0)_{t_1}^x = z = t_0$ and

$$\bar{s}(t_0) = s(z) = (\bar{s}(x|\bar{s}(t_1))(t_0))$$

. For constant symbols we have again $\bar{s}((c)_{t_1}^x) = \bar{s}(c) = c^{\mathfrak{a}} = (\bar{s}(x|\bar{s}(t_1))(c)).$ Finally for $f(t'_0, ..., t'_n)_{t_1}^x = f((t'_0)_{t_1}^x, ..., (t'_n)_{t_1}^x)$ and by the induction hypothesis

$$\begin{split} \bar{s}(f((t'_0)^x_{t_1}, \dots, (t'_n)^x_{t_1})) &= f^{\mathfrak{a}}(\bar{s}((t'_0)^x_{t_1}), \dots, \bar{s}((t'_n)^x_{t_1})) = \\ &= f^{\mathfrak{a}}(\bar{s}(((x|\bar{s}(t_1))(t'_0), \dots, \bar{s}(((x|\bar{s}(t_1))(t'_n)) = \bar{s}(x|\bar{s}(t_1))(f(t'_0, \dots, t'_n)))) \end{split}$$

(b) Prove the substitution lemma by induction on the complexity of ϕ . [Recall that if ϕ is of the form $\forall x\psi$ and t cannot substitute for x since x is not free in ϕ , also x cannot appear in t by definition of "substitutable".]

Solution. If ϕ is $t_0 = t_1$ we have that $\mathfrak{a} \models (t_0 = t_1)_t^x[s]$ iff $\bar{s}((t_0)_t^x) =$ $\bar{s}((t_1)_t^x)$ and by the previous section this is iff $\bar{s}(x|\bar{s}(t))(t_0) = \bar{s}(x|\bar{s}(t))(t_1)$ iff $\mathfrak{a} \models (t_0 = t_1)[s(x|\bar{s}(t))]$ as wanted. For ϕ of the form $P(t_1, ..., t_n)$ we have $\mathfrak{a} \models P(t_1, ..., t_n)_t^x[s]$ iff $\langle \bar{s}((t_1)_t^x), ..., \bar{s}((t_n)_t^x) \rangle \in P^{\mathfrak{a}}$ iff $\langle \bar{s}(x|\bar{s}(t))(t_1), ..., \bar{s}(x|\bar{s}(t))(t_n) \rangle \in P^{\mathfrak{a}}$ iff $\mathfrak{a} \models (P(t_1, ..., t_n))[\bar{s}(x|\bar{s}(t))].$

For ϕ of the form $\neg \alpha$ and $\alpha \rightarrow \beta$ this is an easy application of the induction hypothesis. Finally for ϕ of the form $\forall y\psi$, if *t* is substitutable for *x* in ϕ , then *y* does not appear in *t* and $x \neq y$. Thus, $(\forall y\psi)_t^x = \forall y(\psi)_t^x$ and $\mathfrak{a} \models (\forall y\psi)_t^x[s]$ iff for every $a \in A^\mathfrak{a}$, $\mathfrak{a} \models \psi_t^x[s(y|a)]$, by the induction hypothesis this is equivalent to

$$\mathfrak{a} \models \psi[s(y|a)(x|\bar{s}(t))]$$

Note that $s(y|a)(x|\bar{s}(t)) = s(x|\bar{s}(t))(y|a)$ (as $x \neq y$) hence for all $a \in A^{\mathfrak{a}}$, $\mathfrak{a} \models (\forall y \psi)[s(x|\bar{s}(t))]$ as wanted.

Problem 2. Conclude from the substitution Lemma that the Logical axiom $\forall x \phi \mapsto \phi_t^x$ (where *t* is substitutable for *x* in ϕ) is valid.

Solution. Suppose that $a \models \forall x \phi[s]$, and let us prove $a \models (\phi)_t^x[s]$. By the substitution lemma this is equivalent to showing that $a \models \phi[s(x|\bar{s}(t))]$, but $\bar{s}(t) \in A^a$ and by assumption, for every $a \in A^a$, $a \models \phi[s(x|a)]$, so we are done.

Problem 3 (Optional). Let us show the existence of alphabetical variants: Suppose that ϕ is a formula, *x* is a variable and *t* is a term. There is ϕ' (which is called an alphabetical variant) such that:

- (1) ϕ and ϕ' only differ on quantifies variables.
- (2) $\phi \vdash \phi'$ and $\phi' \vdash \phi$,
- (3) *t* is substitutable for *x* in ϕ' .

Let us define ϕ' by induction on ϕ . If ϕ is atomic, then $\phi' = \phi$. Then $(\phi \rightarrow \psi)' = \phi' \rightarrow \psi'$ and $(\neg \phi)' = \neg \phi'$. Finally, $(\forall y \phi) = \forall z(\phi')_z^y$ where $z \neq x$ does not appear in ϕ' , nor in t.

- (a) Prove that *t* is substitutable for *x* is ϕ' (again, by induction).
- (b) Let us prove that $\phi \vdash \phi'$ and $\phi' \vdash \phi$, by induction on ϕ :
 - (i) Prove that for atomic formulas, $\phi \rightarrow \psi$ and $\neg \phi$.
 - (ii) For formulas of the form $\forall y\phi$, first prove that $\phi \vdash \phi'$. [Hint: note that the choice of z is substitutable for y in ϕ' and therefore we can use axiom 2. Then use generalization.]
 - (iii) Now prove $\phi \vdash \phi'$ [Hint: Explain why $((\phi')_z^y)_y^z = \phi'$, then the induction hypothesis, and the generalization theorem.]

Problem 4. (a) Let \mathcal{L} have the following nonlogical symbols:

- (i) a binary predicate symbol <; and
- (ii) two constant symbol *a* and *b*.

Let *T* be the theory in \mathcal{L} with the following axioms:

- (1) $\forall x \neg (x < x)$.
- (2) $\forall x \forall y (x < y \lor y < x \lor x = y).$
- (3) $\forall x \forall y \forall z ([x < y \land y < z] \rightarrow [x < z]).$
- (4) $\forall x \forall y ([x < y] \rightarrow \exists z [x < z \land z < y]).$
- (5) $\forall x \exists y \exists z (y < x \land x < z).$
- (6) a < b.

MATH 461

(due April 26)

Prove that *T* is consistent and complete.

(b) Prove that $\langle \mathbb{Q}, \langle 2, 3 \rangle \equiv \langle \mathbb{R}, \langle \sqrt{2}, \sqrt{3} \rangle$.

Solution. To prove that *T* is consistent, by the completeness theorem, it suffices to prove it is satifiable. The model $\langle \mathbb{Q}, <, 2, 3 \rangle$ satisfy the above. To prove the completeness, let us use the Los-Vaught theorem, clearly, *T* has no finite model (as any model of *T* is in particular a dense linear order with no least and last element). Suppose that $\mathfrak{a} = \langle A, <_A, a^{\mathfrak{a}}, b^{\mathfrak{a}} \rangle$ and $\mathfrak{b} = \langle B, <_B, a^{\mathfrak{b}}, b^{\mathfrak{b}} \rangle$ are two countable models of *T*. To see that $\mathfrak{a} \simeq \mathfrak{b}$, let us prove that $\mathfrak{a} \simeq \langle \mathbb{Q}, <, 2, 3 \rangle$, and by symmetry this will also be true for \mathfrak{b} . Define $f : A \to \mathbb{Q}$ an isomorphism as follows: by definition of isomorphism, we have to map $f(a^{\mathfrak{a}}) = 2$ and $f(b^{\mathfrak{a}}) = 3$. It is not hard to check that $\{x \in A \mid x <_A a^{\mathfrak{a}}\}, \{x \in A \mid a^{\mathfrak{a}} <_A x <_A b^{\mathfrak{a}}\}, \{x \in A \mid x >_A b^{\mathfrak{a}}\}$ are three dense linear orders without least and last elements, hence by Cantor's theorem, they are isomorphic to \mathbb{Q} . By the same reason, $\mathbb{Q} \cap (-\infty, 2), \mathbb{Q} \cap (2, 3), \mathbb{Q} \cap (3, \infty)$ these are also isomorphic to \mathbb{Q} and therefore there is an isomorphism

$$f_1 : \{ x \in A \mid x <_A a^{\mathfrak{a}} \} \to \mathbb{Q} \cap (-\infty, 2)$$
$$f_2 : \{ x \in A \mid a^{\mathfrak{a}} <_A x <_A b^{\mathfrak{a}} \} \to \mathbb{Q} \cap (2, 3)$$
$$f_3 : \{ x \in A \mid x >_A b^{\mathfrak{a}} \} \to \mathbb{Q} \cap (3, \infty)$$

Define $f : A \to \mathbb{Q}$ by

$$f(x) = \begin{cases} f_1(x) & x <_A a^{\alpha} \\ 2 & x = a^{\alpha} \\ f_2(x) & a^{\alpha} <_A x <_A b^{\alpha} \\ 3 & x = b^{\alpha} \\ f_3(x) & x >_A b^{\alpha} \end{cases}$$

It is easy to check that f is an isomorphism.

(b) Both sides are models of *T*. Since *T* is complete, every two models of *T* are elementary equivalent, and in particular the ones in the problem.