Homework 11

MATH 461
(due April 26)

Problem 1. Let us prove the substitution Lemma we used to prove the Completeness Theorem: For any \mathcal{L}-structure \mathfrak{a}, any ϕ, any term t which is substitutable for x in ϕ, and any $s: V \rightarrow A^{\text {a }}$,

$$
\mathfrak{a} \vDash \phi_{t}^{x}[s] \text { iff } \mathfrak{a} \vDash \phi[s(x \mid \bar{s}(t))]
$$

(a) First show by induction on the complexity of a term t_{0}, that if x is any variable in t_{0}, and t_{1} is any other terms, then $\bar{s}\left(\left(t_{0}\right)_{t_{1}}^{x}\right)=\left(\bar{s}\left(x \mid \bar{s}\left(t_{1}\right)\right)\right)\left(t_{0}\right)$. Solution. By induction on the complexity of t_{0}, if $t_{0}=x$ then $\left(t_{0}\right)_{t_{1}}^{x}=t_{1}$ and $\bar{s}\left(t_{1}\right)=\left(\bar{s}\left(x \mid \bar{s}\left(t_{1}\right)\right)\left(t_{0}\right)\right.$. If $t_{0}=z$ for a variable different from x, then $\left(t_{0}\right)_{t_{1}}^{x}=z=t_{0}$ and

$$
\bar{s}\left(t_{0}\right)=s(z)=\left(\bar{s}\left(x \mid \bar{s}\left(t_{1}\right)\right)\left(t_{0}\right)\right.
$$

. For constant symbols we have again $\bar{s}\left((c)_{t_{1}}^{x}\right)=\bar{s}(c)=c^{\mathfrak{a}}=\left(\bar{s}\left(x \mid \bar{s}\left(t_{1}\right)\right)(c)\right)$. Finally for $f\left(t_{0}^{\prime}, \ldots, t_{n}^{\prime}\right)_{t_{1}}^{x}=f\left(\left(t_{0}^{\prime}\right)_{t_{1}}^{x}, \ldots,\left(t_{n}^{\prime}\right)_{t_{1}}^{x}\right)$ and by the induction hypothesis

$$
\begin{gathered}
\bar{s}\left(f\left(\left(t_{0}^{\prime}\right)_{t_{1}}^{x}, \ldots,\left(t_{n}^{\prime}\right)_{t_{1}}^{x}\right)\right)=f^{\mathfrak{a}}\left(\bar{s}\left(\left(t_{0}^{\prime}\right)_{t_{1}}^{x}\right), \ldots, \bar{s}\left(\left(t_{n}^{\prime}\right)_{t_{1}}^{x}\right)\right)= \\
=f^{\mathfrak{a}}\left(\overline { s } \left(\left(\left(x \mid \bar{s}\left(t_{1}\right)\right)\left(t_{0}^{\prime}\right), \ldots, \bar{s}\left(\left(\left(x \mid \bar{s}\left(t_{1}\right)\right)\left(t_{n}^{\prime}\right)\right)=\bar{s}\left(x \mid \bar{s}\left(t_{1}\right)\right)\left(f\left(t_{0}^{\prime}, \ldots, t_{n}^{\prime}\right)\right) .\right.\right.\right.\right.
\end{gathered}
$$

(b) Prove the substitution lemma by induction on the complexity of ϕ. [Recall that if ϕ is of the form $\forall x \psi$ and t cannot substitute for x since x is not free in ϕ, also x cannot appear in t by definition of "substitutable".]

Solution. If ϕ is $t_{0}=t_{1}$ we have that $\mathfrak{a} \vDash\left(t_{0}=t_{1}\right)_{t}^{x}[s]$ iff $\bar{s}\left(\left(t_{0}\right)_{t}^{x}\right)=$ $\bar{s}\left(\left(t_{1}\right)_{t}^{x}\right)$ and by the previous section this is iff $\bar{s}(x \mid \bar{s}(t))\left(t_{0}\right)=\bar{s}(x \mid \bar{s}(t))\left(t_{1}\right)$ iff $\mathfrak{a} \equiv\left(t_{0}=t_{1}\right)[s(x \mid \bar{s}(t))]$ as wanted. For ϕ of the form $P\left(t_{1}, \ldots, t_{n}\right)$ we

Homework 11

MATH 461
(due April 26)
April 19, 2024
have a $=P\left(t_{1}, \ldots, t_{n}\right)_{t}^{x}[s]$ iff $\left\langle\bar{s}\left(\left(t_{1}\right)_{t}^{x}\right), \ldots, \bar{s}\left(\left(t_{n}\right)_{t}^{x}\right)\right\rangle \in P^{\text {aff }}\left\langle\bar{s}(x \mid \bar{s}(t))\left(t_{1}\right), \ldots, \bar{s}(x \mid \bar{s}(t))\left(t_{n}\right)\right\rangle \in$ $P^{\mathfrak{a}}$ iff $\mathfrak{a}=\left(P\left(t_{1}, \ldots, t_{n}\right)\right)[\bar{s}(x \mid \bar{s}(t))]$.

For ϕ of the form $\neg \alpha$ and $\alpha \rightarrow \beta$ this is an easy application of the induction hypothesis. Finally for ϕ of the form $\forall y \psi$, if t is substitutable for x in ϕ, then y does not appear in t and $x \neq y$. Thus, $(\forall y \psi)_{t}^{x}=$ $\forall y(\psi)_{t}^{x}$ and $\mathfrak{a} \vDash(\forall y \psi)_{t}^{x}[s]$ iff for every $a \in A^{\mathfrak{a}}, \mathfrak{a} \vDash \psi_{t}^{x}[s(y \mid a)]$, by the induction hypothesis this is equivalent to

$$
\mathfrak{a} \vDash \psi[s(y \mid a)(x \mid \bar{s}(t))]
$$

Note that $s(y \mid a)(x \mid \bar{s}(t))=s(x \mid \bar{s}(t))(y \mid a)($ as $x \neq y)$ hence for all $a \in A^{a}$, $\mathfrak{a}=(\forall y \psi)[s(x \mid \bar{s}(t))]$ as wanted.

Problem 2. Conclude from the substitution Lemma that the Logical axiom $\forall x \phi \mapsto \phi_{t}^{x}$ (where t is substitutable for x in ϕ) is valid.

Solution. Suppose that $\mathfrak{a} \vDash \forall x \phi[s]$, and let us prove $\mathfrak{a} \vDash(\phi)_{t}^{x}[s]$. By the substitution lemma this is equivalent to showing that $\mathfrak{a}=\phi[s(x \mid \bar{s}(t))]$, but $\bar{s}(t) \in A^{a}$ and by assumption, for every $a \in A^{\mathfrak{a}}, \mathfrak{a} \mid=\phi[s(x \mid a)]$, so we are done.

Problem 3 (Optional). Let us show the existence of alphabetical variants: Suppose that ϕ is a formula, x is a variable and t is a term. There is ϕ^{\prime} (which is called an alphabetical variant) such that:
(1) ϕ and ϕ^{\prime} only differ on quantifies variables.
(2) $\phi \vdash \phi^{\prime}$ and $\phi^{\prime} \vdash \phi$,
(3) t is substitutable for x in ϕ^{\prime}.

Homework 11

MATH 461

Let us define ϕ^{\prime} by induction on ϕ. If ϕ is atomic, then $\phi^{\prime}=\phi$. Then $(\phi \rightarrow \psi)^{\prime}=\phi^{\prime} \rightarrow \psi^{\prime}$ and $(\neg \phi)^{\prime}=\neg \phi^{\prime}$. Finally, $(\forall y \phi)=\forall z\left(\phi^{\prime}\right)_{z}^{y}$ where $z \neq x$ does not appear in ϕ^{\prime}, nor in t.
(a) Prove that t is substitutable for x is ϕ^{\prime} (again, by induction).
(b) Let us prove that $\phi \vdash \phi^{\prime}$ and $\phi^{\prime} \vdash \phi$, by induction on ϕ :
(i) Prove that for atomic formulas, $\phi \rightarrow \psi$ and $\neg \phi$.
(ii) For formulas of the form $\forall y \phi$, first prove that $\phi \vdash \phi^{\prime}$.
[Hint: note that the choice of z is substitutable for y in ϕ^{\prime} and therefore we can use axiom 2 . Then use generalization.]
(iii) Now prove $\phi \vdash \phi^{\prime}$ [Hint: Explain why $\left(\left(\phi^{\prime}\right)_{z}^{y}\right)_{y}^{z}=\phi^{\prime}$, then the induction hypothesis, and the generalization theorem.]

Problem 4. (a) Let \mathcal{L} have the following nonlogical symbols:
(i) a binary predicate symbol <; and
(ii) two constant symbol a and b.

Let T be the theory in \mathcal{L} with the following axioms:
(1) $\forall x \neg(x<x)$.
(2) $\forall x \forall y(x<y \vee y<x \vee x=y)$.
(3) $\forall x \forall y \forall z([x<y \wedge y<z] \rightarrow[x<z])$.
(4) $\forall x \forall y([x<y] \rightarrow \exists z[x<z \wedge z<y])$.
(5) $\forall x \exists y \exists z(y<x \wedge x<z)$.
(6) $a<b$.

Homework 11

MATH 461

Prove that T is consistent and complete.
(b) Prove that $\langle\mathbb{Q},<, 2,3\rangle \equiv\langle\mathbb{R},<, \sqrt{2}, \sqrt{3}\rangle$.

Solution. To prove that T is consistent, by the completeness theorem, it suffices to prove it is satifiable. The model $\langle\mathbb{Q},<, 2,3\rangle$ satisfy the above. To prove the completeness, let us use the Los-Vaught theorem, clearly, T has no finite model (as any model of T is in particular a dense linear order with no least and last element). Suppose that $\mathfrak{a}=\left\langle A,<_{A}, a^{\mathfrak{a}}, b^{\mathfrak{a}}\right\rangle$ and $\mathfrak{b}=\left\langle B,<_{B}, a^{\mathfrak{b}}, b^{\mathfrak{b}}\right\rangle$ are two countable models of T. To see that $\mathfrak{a} \simeq \mathfrak{b}$, let us prove that $\mathfrak{a} \simeq\langle\mathbb{Q},<, 2,3\rangle$, and by symmetry this will also be true for \mathfrak{b}. Define $f: A \rightarrow \mathbb{Q}$ an isomorphism as follows: by definition of isomorphism, we have to map $f\left(a^{\mathfrak{a}}\right)=2$ and $f\left(b^{\mathfrak{a}}\right)=3$. It is not hard to check that $\left\{x \in A \mid x<_{A} a^{\mathfrak{a}}\right\},\left\{x \in A \mid a^{\mathfrak{a}}<_{A} x<_{A} b^{\mathfrak{a}}\right\},\{x \in A \mid$ $\left.x>_{A} b^{\mathrm{a}}\right\}$ are three dense linear orders without least and last elements, hence by Cantor's theorem, they are isomorphic to \mathbb{Q}. By the same reason, $\mathbb{Q} \cap(-\infty, 2), \mathbb{Q} \cap(2,3), \mathbb{Q} \cap(3, \infty)$ these are also isomorphic to \mathbb{Q} and therefore there is an isomorphism

$$
\begin{gathered}
f_{1}:\left\{x \in A \mid x<_{A} a^{\mathfrak{a}}\right\} \rightarrow \mathbb{Q} \cap(-\infty, 2) \\
f_{2}:\left\{x \in A \mid a^{\mathfrak{a}}<_{A} x<_{A} b^{\mathfrak{a}}\right\} \rightarrow \mathbb{Q} \cap(2,3) \\
f_{3}:\left\{x \in A \mid x>_{A} b^{\mathfrak{a}}\right\} \rightarrow \mathbb{Q} \cap(3, \infty)
\end{gathered}
$$

Homework 11

MATH 461

Define $f: A \rightarrow \mathbb{Q}$ by

$$
f(x)= \begin{cases}f_{1}(x) & x<_{A} a^{\mathfrak{a}} \\ 2 & x=a^{\mathfrak{a}} \\ f_{2}(x) & a^{\mathfrak{a}}<_{A} x<_{A} b^{\mathfrak{a}} \\ 3 & x=b^{\mathfrak{a}} \\ f_{3}(x) & x>_{A} b^{\mathfrak{a}}\end{cases}
$$

It is easy to check that f is an isomorphism.
(b) Both sides are models of T. Since T is complete, every two models of T are elementary equivalent, and in particular the ones in the problem.

