Homework 11

MATH 461

Problem 1. Let us prove the substitution Lemma we used to prove the Completeness Theorem: For any \mathcal{L}-structure \mathfrak{a}, any ϕ, any term t which is substitutable for x in ϕ, and any $s: V \rightarrow A^{\text {a }}$,

$$
\mathfrak{a} \vDash \phi_{t}^{x}[s] \text { iff } \mathfrak{a} \vDash \phi[s(x \mid \bar{s}(t))]
$$

(a) First show by induction on the complexity of a term t_{0}, that if x is any variable in t_{0}, and t_{1} is any other terms, then $\bar{s}\left(\left(t_{0}\right)_{t_{1}}^{x}\right)=\left(\bar{s}\left(x \mid \bar{s}\left(t_{1}\right)\right)\right)\left(t_{0}\right)$.
(b) Prove the substitution lemma by induction on the complexity of ϕ. [Recall that if ϕ is of the form $\forall x \psi$ and t cannot substitute for x since x is not free in ϕ, also x cannot appear in t by definition of "substitutable".]

Problem 2. Conclude from the substitution Lemma that the Logical axiom $\forall x \phi \mapsto \phi_{t}^{x}$ (where t is substitutable for x in ϕ) is valid.

Problem 3 (Optional). Let us show the existence of alphabetical variants: Suppose that ϕ is a formula, x is a variable and t is a term. There is ϕ^{\prime} (which is called an alphabetical variant) such that:
(1) ϕ and ϕ^{\prime} only differ on quantifies variables.
(2) $\phi \vdash \phi^{\prime}$ and $\phi^{\prime} \vdash \phi$,
(3) t is substitutable for x in ϕ^{\prime}.

Let us define ϕ^{\prime} by induction on ϕ. If ϕ is atomic, then $\phi^{\prime}=\phi$. Then $(\phi \rightarrow \psi)^{\prime}=\phi^{\prime} \rightarrow \psi^{\prime}$ and $(\neg \phi)^{\prime}=\neg \phi^{\prime}$. Finally, $(\forall y \phi)=\forall z\left(\phi^{\prime}\right)_{z}^{y}$ where $z \neq x$ does not appear in ϕ^{\prime}, nor in t.

Homework 11

MATH 461
(a) Prove that t is substitutable for x is ϕ^{\prime} (again, by induction).
(b) Let us prove that $\phi \vdash \phi^{\prime}$ and $\phi^{\prime} \vdash \phi$, by induction on ϕ :
(i) Prove that for atomic formulas, $\phi \rightarrow \psi$ and $\neg \phi$.
(ii) For formulas of the form $\forall y \phi$, first prove that $\phi \vdash \phi^{\prime}$.
[Hint: note that the choice of z is substitutable for y in ϕ^{\prime} and therefore we can use axiom 2 . Then use generalization.]
(iii) Now prove $\phi \vdash \phi^{\prime}$ [Hint: Explain why $\left(\left(\phi^{\prime}\right)_{z}^{y}\right)_{y}^{z}=\phi^{\prime}$, then the induction hypothesis, and the generalization theorem.]

Problem 4. (a) Let \mathcal{L} have the following nonlogical symbols:
(i) a binary predicate symbol <; and
(ii) two constant symbol a and b.

Let T be the theory in \mathcal{L} with the following axioms:
(1) $\forall x \neg(x<x)$.
(2) $\forall x \forall y(x<y \vee y<x \vee x=y)$.
(3) $\forall x \forall y \forall z([x<y \wedge y<z] \rightarrow[x<z])$.
(4) $\forall x \forall y([x<y] \rightarrow \exists z[x<z \wedge z<y])$.
(5) $\forall x \exists y \exists z(y<x \wedge x<z)$.
(6) $a<b$.

Prove that T is consistent and complete.
(b) Prove that $\langle\mathbb{Q},<, 2,3\rangle \equiv\langle\mathbb{R},<, \sqrt{2}, \sqrt{3}\rangle$.

