Problem 1. Let us prove the substitution Lemma we used to prove the Completeness Theorem: For any \mathcal{L} -structure \mathfrak{a} , any ϕ , any term t which is substitutable for x in ϕ , and any $s : V \to A^{\mathfrak{a}}$,

$$\mathfrak{a} \models \phi_t^x[s]$$
 iff $\mathfrak{a} \models \phi[s(x|\bar{s}(t))]$

- (a) First show by induction on the complexity of a term t_0 , that if x is any variable in t_0 , and t_1 is any other terms, then $\bar{s}((t_0)_{t_1}^x) = (\bar{s}(x|\bar{s}(t_1)))(t_0)$.
- (b) Prove the substitution lemma by induction on the complexity of φ. [Recall that if φ is of the form ∀xψ and t cannot substitute for x since x is not free in φ, also x cannot appear in t by definition of "substitutable".]

Problem 2. Conclude from the substitution Lemma that the Logical axiom $\forall x \phi \mapsto \phi_t^x$ (where *t* is substitutable for *x* in ϕ) is valid.

Problem 3 (Optional). Let us show the existence of alphabetical variants: Suppose that ϕ is a formula, *x* is a variable and *t* is a term. There is ϕ' (which is called an alphabetical variant) such that:

- (1) ϕ and ϕ' only differ on quantifies variables.
- (2) $\phi \vdash \phi'$ and $\phi' \vdash \phi$,
- (3) *t* is substitutable for *x* in ϕ' .

Let us define ϕ' by induction on ϕ . If ϕ is atomic, then $\phi' = \phi$. Then $(\phi \rightarrow \psi)' = \phi' \rightarrow \psi'$ and $(\neg \phi)' = \neg \phi'$. Finally, $(\forall y \phi) = \forall z (\phi')_z^y$ where $z \neq x$ does not appear in ϕ' , nor in *t*.

- (a) Prove that *t* is substitutable for *x* is ϕ' (again, by induction).
- (b) Let us prove that $\phi \vdash \phi'$ and $\phi' \vdash \phi$, by induction on ϕ :
 - (i) Prove that for atomic formulas, $\phi \rightarrow \psi$ and $\neg \phi$.
 - (ii) For formulas of the form ∀yφ, first prove that φ ⊢ φ'.
 [Hint: note that the choice of *z* is substitutable for *y* in φ' and therefore we can use axiom 2. Then use generalization.]
 - (iii) Now prove $\phi \vdash \phi'$ [Hint: Explain why $((\phi')_z^y)_y^z = \phi'$, then the induction hypothesis, and the generalization theorem.]

Problem 4. (a) Let \mathcal{L} have the following nonlogical symbols:

- (i) a binary predicate symbol <; and
- (ii) two constant symbol *a* and *b*.

Let *T* be the theory in \mathcal{L} with the following axioms:

(1) $\forall x \neg (x < x)$.

MATH 461

- (2) $\forall x \forall y (x < y \lor y < x \lor x = y).$
- (3) $\forall x \forall y \forall z ([x < y \land y < z] \rightarrow [x < z]).$
- (4) $\forall x \forall y ([x < y] \rightarrow \exists z [x < z \land z < y]).$
- (5) $\forall x \exists y \exists z (y < x \land x < z).$
- (6) a < b.

Prove that *T* is consistent and complete.

(b) Prove that $\langle \mathbb{Q}, \langle 2, 3 \rangle \equiv \langle \mathbb{R}, \langle \sqrt{2}, \sqrt{3} \rangle$.