Homework 2-Sols

MATH 461

Problem 1. Let $C(\mathbb{R})$ be the set of all continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that

$$
C(\mathbb{R}) \leq \mathbb{Q}_{\mathbb{R}}
$$

[Hint: use that fact that \mathbb{Q} is dense in \mathbb{R} to prove that the restriction function $G: C(\mathbb{R}) \rightarrow \mathbb{Q}_{\mathbb{R}}$ defined by $G(f)=f \upharpoonright \mathbb{Q}$ is one-to-one.]
solution. Let $G: C(\mathbb{R}) \rightarrow \mathbb{Q}_{\mathbb{R}}$ defined by $G(f)=f \upharpoonright \mathbb{Q}$, let us prove that it is one-to-one. Suppose that f, g are two continuous functions, such that $f \upharpoonright \mathbb{Q}=g \upharpoonright \mathbb{Q}$. We need to prove $f=g$. Let $x \in \mathbb{R}$, by density of the rationals we can find a sequence $\left(q_{n}\right)_{n=0}^{\infty}$ of rationals, such that $\lim _{n \rightarrow \infty} q_{n}=x$, then for each $n, f\left(q_{n}\right)=g\left(q_{n}\right)$ (since $f \upharpoonright \mathbb{Q}=g \upharpoonright \mathbb{Q}$). By continuity,

$$
f(x)=\lim _{n \rightarrow \infty} f\left(q_{n}\right)=\lim _{n \rightarrow \infty} g\left(q_{n}\right)=g(x)
$$

Problem 2. Prove that for every $\alpha<\beta$ real numbers $(\alpha, \beta) \approx(0,1)$. [Hint: First stretch/shrink $(0,1)$ to have length $\beta-\alpha$, then shift it by $+c$ as we did in class.]

Solution. The function $f:(\alpha, \beta) \rightarrow(0,1)$ defined by $f(x)=\frac{x-\alpha}{\beta-\alpha}$ is a bijection (check it!)

Problem 3. Show that ${ }^{\mathbb{N}}\{0,1\} \times \mathbb{N}\{0,1\} \approx \mathbb{N}\{0,1\}$. [Hint: see HW1 Problem 5.]

Solution the interleaving function was shown to be a bijection by this exercise and therefore the sets are enumerable.

Problem 4. Prove by a diagonalization argument that $\mathbb{N}<\mathbb{N}^{\mathbb{N}_{\text {even }}}$.

Homework 2-Sols

MATH 461
solution First, the function $G: \mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}_{\text {even }}}$ defined by $G(n)(m)=2 n$ (namely the function G maps the natural number n to the constant function $2 n)$ is injective. Now suppose towards a contradiction that $F: \mathbb{N} \rightarrow \mathbb{N}^{\mathbb{N}}$ even is subjective. Define

$$
g(n)=F(n)(n)+2
$$

Note that $F(n)(n)$ is even and therefore $F(n)(n)+2>F(n)(n)$ is also even. Hence $g: \mathbb{N} \rightarrow \mathbb{N}_{\text {even }}$ and for every $n, g(n) \neq F(n)(n)$. It follows that $g \neq F(n)$ for every n, which in turn implies that $g \notin \operatorname{Im}(F)$, contradicting F being onto.

Problem 5. Prove that $\{X \in P(\mathbb{N}) \mid X \approx \mathbb{N}\} \approx P(\mathbb{N})$. [Hint: CantorBernstein]

Solution: Denote by A the set on the left-hand side. The $A \subseteq P(\mathbb{N})$ and therefore $A \leq P(\mathbb{N})$. In the other direction, since $\mathbb{N} \approx \mathbb{N}_{\text {even }}$ it follows that $P(\mathbb{N}) \approx P\left(\mathbb{N}_{\text {even }}\right)$ so is suffices to find an injection $f: P\left(\mathbb{N}_{\text {even }}\right) \rightarrow A$. Define $f(X)=X \cup \mathbb{N}_{\text {odd }}$. Then f is well defined as for every $X \in P\left(\mathbb{N}_{\text {even }}\right)$,

$$
\mathbb{N}_{\text {odd }} \subseteq f(X)=X \cup \mathbb{N}_{o d d} \subseteq \mathbb{N}
$$

Hence by CBS theorem, $f(X) \approx \mathbb{N}$. It follows that $f(X) \in A$. To see that f is injective, Suppose that $X_{1}, X_{2} \subseteq \mathbb{N}_{\text {even }}$ and $f\left(X_{1}\right)=f\left(X_{2}\right)$. Then

$$
\mathbb{N}_{\text {even }} \cap f\left(X_{1}\right)=\mathbb{N}_{\text {even }} \cap\left(X_{1} \cup \mathbb{N}_{\text {odd }}\right)=\mathbb{N}_{\text {even }} \cap\left(X_{2} \cup \mathbb{N}_{\text {odd }}=\mathbb{N}_{\text {even }} \cap f\left(X_{2}\right)\right.
$$

By distributivity of \cap, \cup, and since $X_{1}, X_{2} \subseteq \mathbb{N}_{\text {even }}$, we have for $i=1,2$

$$
\mathbb{N}_{\text {even }} \cap\left(X_{i} \cup \mathbb{N}_{\text {odd }}\right)=\left(\mathbb{N}_{\text {even }} \cap X_{i}\right) \cup\left(\mathbb{N}_{\text {even }} \cap \mathbb{N}_{\text {odd }}\right)=X_{i} \cup \emptyset=X_{i}
$$

Hence $X_{1}=X_{2}$.

Homework 2-Sols

MATH 461

Problem 6. Let A be any set. Let us define recursively $A_{0}=A$ and $A_{n+1}=$ $P\left(A_{n}\right)$. Define $A_{\infty}=\bigcup_{n \in \mathbb{N}} A_{n}$. Prove that for every set A and any $n \in \mathbb{N}$, $A_{n}<A_{\omega}$.

Solution. By inclusion, for every $n \in \mathbb{N}, A_{n} \leq A_{\infty}$. Suppose toward a contradiction that there is n such that $A_{n} \approx A_{\infty}$. Then $A_{n} \leq A_{n+1} \leq A_{\infty} \approx$ A_{n} and therefore by CSB Theorem $A_{n+1} \approx A_{n}$. However, $A_{n+1}=P\left(A_{n}\right)$, this is a contradiction to Cantor's theorem that for every set $A, A<P(A)$.

