Problem 1. Let $C(\mathbb{R})$ be the set of all continuous function $f : \mathbb{R} \to \mathbb{R}$. Prove that

$$C(\mathbb{R}) \leq \mathbb{Q}\mathbb{R}$$

[Hint: use that fact that \mathbb{Q} is dense in \mathbb{R} to prove that the restriction function $G : C(\mathbb{R}) \to \mathbb{Q}\mathbb{R}$ defined by $G(f) = f \upharpoonright \mathbb{Q}$ is one-to-one.]

Problem 2. Prove that for every $\alpha < \beta$ real numbers $(\alpha, \beta) \approx (0, 1)$. [Hint: First stretch/shrink (0, 1) to have length $\beta - \alpha$, then shift it by +c as we did in class.]

Problem 3. Show that \mathbb{N} {0, 1} × \mathbb{N} {0, 1} ≈ \mathbb{N} {0, 1}. [Hint: see HW1 Problem 5.]

Problem 4. Prove by a diagonalization argument that $\mathbb{N} \prec \mathbb{N}_{even}$.

Problem 5. Prove that $\{X \in P(\mathbb{N}) \mid X \approx \mathbb{N}\} \approx P(\mathbb{N})$. [Hint: Cantor-Bernstein]

Problem 6. Let *A* be any set. Let us define recursively $A_0 = A$ and $A_{n+1} = P(A_n)$. Define $A_{\omega} = \bigcup_{n < \omega} A_n$. Prove that for every set *A* and any $n < \omega$, $A_n < A_{\omega}$.