Problem 1. A function $f : A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$\{a \in A \mid f(a) = b\}$$

1. Give an example of a function which is countable-to-one but not one-to-one.

Solution. $f : \mathbb{N} \to \mathbb{N}$, $f(n) = \lfloor \frac{n}{2} \rfloor$ (where $\lfloor q \rfloor$ is the greatest integer less or equal to *q*)

Suppose that A is a set such that there exists a countable-to-one function f : A → Q. Prove that A is countable. [Hint: countable union of countable sets is countable]

Solution. Since *f* is a function $A = \bigcup_{q \in \mathbb{Q}} f^{-1}[\{q\}]$, where $f^{-1}[\{q\}] = \{a \in A \mid f(a) = q\}$ (prove this!). By the countable-to-one assumption, $f^{-1}[\{q\}]$ is countable for every *q*. Since \mathbb{Q} is countable, we get that *A* is a countable union of countable sets and therefore countable.

Problem 2. Let $\Pi \subseteq P(A) \setminus \{\emptyset\}$. Define

MATH 461

$$F_{\Pi} = \{ \langle x, X \rangle \in A \times \Pi \mid x \in X \}$$

prove that $F_{\Pi} : A \to P(A)$ is a function of and only if Π is a partition.

solution. Suppose that F_{Π} is a function, and let us prove that Π is a partition. By assumption, $\Pi \subseteq P(A) \setminus \{\emptyset\}$ and therefore $\emptyset \notin \Pi$. Since F_{Π} is total, for every $x \in A$ there is $X \in \Pi$ such that $x \in X$ and therefore $A \subseteq \bigcup \Pi$. Since $\Pi \subseteq P(A), \bigcup \Pi \subseteq A$, hence $\bigcup \Pi = A$. Finally, if $X \cap Y \neq \emptyset$,

then there is $x \in X \cap Y$ and therefore $\langle x, X \rangle, \langle x, Y \rangle \in F_{\Pi}$. Since F_{Π} is univalent, X = Y.

For the other direction, suppose that Π is a partition and let us prove that F_{Π} is a function. To see it is total, let $x \in A$, then since $x \in A = \bigcup \Pi$, there is $X \in \Pi$ such that $x \in X$, and therefore by definition $\langle x, X \rangle \in F_{\Pi}$. To see it is univalent, let $\langle x, X \rangle$, $\langle x, Y \rangle \in F_{\Pi}$. By definition, this means that $x \in X \cap Y$. Hence $X \cap Y \neq \emptyset$. Since $X, Y \in \Pi$, by definition of partition, X = Y. Hence F_{Π} is a function.

Problem 3. Describe the partitions induced from the following equivalence relations (namely, compute A/E in each of the cases):

- 1. $A = \mathbb{Z}, E = \{ \langle z, z' \rangle \in \mathbb{Z}^2 \mid |z| = |z'| \}.$ **Solution.** $\{\{0\}\} \cup \{\{-n, n\} \mid n \in \mathbb{N}_+\}.$
- 2. $A = \mathbb{R} \times \mathbb{R}, E = \{ \langle \langle x, y \rangle, \langle a, b \rangle \rangle \in (\mathbb{R} \times \mathbb{R})^2 \mid \min(x, y) = \min(a, b) \}.$ **Solution.** $\{[r, \infty) \times \{r\} \cup \{r\} \times [r, \infty) \mid r \in \mathbb{R}\}.$
- 3. for $A = \{0, \dots, 10\} \{0, 1\}$. define

$$E = \{ \langle f, g \rangle \in A \times A \mid |\{n \mid f(n) = 1\} | = |\{n \mid g(n) = 1\} |\}$$

Solution. {{ $f \in A \mid |f^{-1}[\{1\}]| = k$ } | $k \in \{0, ..., 11\}$ }.

Problem 4. Let $A = \mathbb{N}^{\mathbb{N}}$, and consider the equivalence relation $R = \{\langle f, g \rangle \in \mathbb{N}\}$ $(\mathbb{N}^{\mathbb{N}})^2 \mid f(0) = g(0)\}$ in *A* (no need to prove that). Prove that $A/R \approx \mathbb{N}$.

Solution. Define $F : \mathbb{N} \to A/R$ defined by $F(n) = \{f \in A \mid f(0) = n\}$. Check that $F(n) \in A/R$, clearly if F is one-to-one, and check that F is surjective.

Problem 5 (Optional). On \mathbb{N} {0, 1}, define the equivalence relation *E* by *fEg* if and only if there is *N* such that for every $n \ge N$, f(n) = g(n).

Prove that $\mathbb{N}\{0,1\}/E \approx \mathbb{N}\{0,1\}$. [Guidence: In order to prove that $\mathbb{N}\{0,1\} \leq \mathbb{N}\{0,1\}/E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N} = \bigoplus_{n \in \mathbb{N}} A_n$. Try to use such a decomposition to define a function F: $\mathbb{N}\{0,1\} \rightarrow \mathbb{N}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values f(n)) infinitely many times]