Homework 3-Sols

Problem 1. A function $f: A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$
\{a \in A \mid f(a)=b\}
$$

1. Give an example of a function which is countable-to-one but not one-to-one.

Solution. $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=\left\lfloor\frac{n}{2}\right\rfloor$ (where $\lfloor q\rfloor$ is the greatest integer less or equal to q)
2. Suppose that A is a set such that there exists a countable-to-one function $f: A \rightarrow \mathbb{Q}$. Prove that A is countable. [Hint: countable union of countable sets is countable]

Solution. Since f is a function $A=\bigcup_{q \in \mathbb{Q}} f^{-1}[\{q\}]$, where $f^{-1}[\{q\}]=$ $\{a \in A \mid f(a)=q\}$ (prove this!). By the countable-to-one assumption, $f^{-1}[\{q\}]$ is countable for every q. Since \mathbb{Q} is countable, we get that A is a countable union of countable sets and therefore countable.

Problem 2. Let $\Pi \subseteq P(A) \backslash\{\emptyset\}$. Define

$$
F_{\Pi}=\{\langle x, X\rangle \in A \times \Pi \mid x \in X\}
$$

prove that $F_{\Pi}: A \rightarrow P(A)$ is a function of and only if Π is a partition.
solution. Suppose that F_{Π} is a function, and let us prove that Π is a partition. By assumption, $\Pi \subseteq P(A) \backslash\{\emptyset\}$ and therefore $\emptyset \notin \Pi$. Since F_{Π} is total, for every $x \in A$ there is $X \in \Pi$ such that $x \in X$ and therefore $A \subseteq \bigcup \Pi$. Since $\Pi \subseteq P(A), \cup \Pi \subseteq A$, hence $\cup \Pi=A$. Finally, if $X \cap Y \neq \emptyset$,

Homework 3-Sols

then there is $x \in X \cap Y$ and therefore $\langle x, X\rangle,\langle x, Y\rangle \in F_{\Pi}$. Since F_{Π} is univalent, $X=Y$.

For the other direction, suppose that Π is a partition and let us prove that F_{Π} is a function. To see it is total, let $x \in A$, then since $x \in A=\bigcup \Pi$, there is $X \in \Pi$ such that $x \in X$, and therefore by definition $\langle x, X\rangle \in F_{\Pi}$. To see it is univalent, let $\langle x, X\rangle,\langle x, Y\rangle \in F_{\Pi}$. By definition, this means that $x \in X \cap Y$. Hence $X \cap Y \neq \emptyset$. Since $X, Y \in \Pi$, by definition of partition, $X=Y$. Hence F_{Π} is a function.

Problem 3. Describe the partitions induced from the following equivalence relations (namely, compute A / E in each of the cases):

1. $A=\mathbb{Z}, E=\left\{\left\langle z, z^{\prime}\right\rangle \in \mathbb{Z}^{2}| | z\left|=\left|z^{\prime}\right|\right\}\right.$.

Solution. $\{\{0\}\} \cup\left\{\{-n, n\} \mid n \in \mathbb{N}_{+}\right\}$.
2. $A=\mathbb{R} \times \mathbb{R}, E=\left\{\langle\langle x, y\rangle,\langle a, b\rangle\rangle \in(\mathbb{R} \times \mathbb{R})^{2} \mid \min (x, y)=\min (a, b)\right\}$.

Solution. $\{[r, \infty) \times\{r\} \cup\{r\} \times[r, \infty) \mid r \in \mathbb{R}\}$.
3. for $A=\{0, \ldots, 10\}\{0,1\}$. define

$$
E=\{\langle f, g\rangle \in A \times A| |\{n \mid f(n)=1\}|=|\{n \mid g(n)=1\}|\}
$$

Solution. $\left\{\left\{f \in A\left|\left|f^{-1}[\{1\}]\right|=k\right\} \mid k \in\{0, \ldots, 11\}\right\}\right.$.
Problem 4. Let $A=\mathbb{N}^{\mathbb{N}}$, and consider the equivalence relation $R=\{\langle f, g\rangle \in$ $\left.\left(\mathbb{N}^{\mathbb{N}}\right)^{2} \mid f(0)=g(0)\right\}$ in A (no need to prove that). Prove that $A / R \approx \mathbb{N}$.

Solution. Define $F: \mathbb{N} \rightarrow A / R$ defined by $F(n)=\{f \in A \mid f(0)=n\}$. Check that $F(n) \in A / R$, clearly if F is one-to-one, and check that F is surjective.

Homework 3-Sols

MATH 461

Problem 5 (Optional). $\mathrm{On}^{\mathbb{N}}\{0,1\}$, define the equivalence relation E by $f E g$ if and only if there is N such that for every $n \geq N, f(n)=g(n)$.

Prove that ${ }^{\mathbb{N}}\{0,1\} / E \approx \mathbb{N}\{0,1\}$. [Guidence: In order to prove that ${ }^{\mathbb{N}}\{0,1\} \leq{ }^{\mathbb{N}}\{0,1\} / E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N}=\uplus_{n \in \mathbb{N}} A_{n}$. Try to use such a decomposition to define a function F : $\mathbb{N}\{0,1\} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values $f(n))$ infinitely many times]

