Homework 3

Problem 1. A function $f: A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$
\{a \in A \mid f(a)=b\}
$$

1. Give an example of a function which is countable-to-one but not one-to-one.
2. Suppose that A is a set such that there exists a countable-to-one function $f: A \rightarrow \mathbb{Q}$. Prove that A is countable. [Hint: countable union of countable sets is countable]

Problem 2. Let $\Pi \subseteq P(A) \backslash\{\emptyset\}$. Define

$$
F_{\Pi}=\{\langle x, X\rangle \in A \times \Pi \mid x \in X\}
$$

prove that $F_{\Pi}: A \rightarrow P(A)$ is a function of and only if Π is a partition.

Problem 3. Describe the partitions induced from the following equivalence relations (namely, compute A / E in each of the cases):

1. $A=\mathbb{Z}, E=\left\{\left\langle z, z^{\prime}\right\rangle \in \mathbb{Z}^{2}| | z\left|=\left|z^{\prime}\right|\right\}\right.$.
2. $A=\mathbb{R} \times \mathbb{R}, E=\left\{\langle\langle x, y\rangle,\langle a, b\rangle\rangle \in(\mathbb{R} \times \mathbb{R})^{2} \mid \min (x, y)=\min (a, b)\right\}$
3. for $A=\{0, \ldots, 10\}\{0,1\}$. define

$$
E=\{\langle f, g\rangle \in A \times A| |\{n \mid f(n)=1\}|=|\{n \mid g(n)=1\}|\}
$$

Problem 4. Let $A=\mathbb{N}^{\mathbb{N}}$, and consider the equivalence relation $R=\{\langle f, g\rangle \in$ $\left.\left(\mathbb{N}^{\mathbb{N}}\right)^{2} \mid f(0)=g(0)\right\}$ in A (no need to prove that). Prove that $A / R \approx \mathbb{N}$.

Homework 3

MATH 461

Problem 5 (Optional). $O n^{\mathbb{N}}\{0,1\}$, define the equivalence relation E by $f E g$ if and only if there is N such that for every $n \geq N, f(n)=g(n)$.

Prove that ${ }^{\mathbb{N}}\{0,1\} / E \approx \mathbb{N}\{0,1\}$. [Guidence: In order to prove that $\mathbb{N}\{0,1\} \leq{ }^{\mathbb{N}}\{0,1\} / E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N}=\uplus_{n \in \mathbb{N}} A_{n}$. Try to use such a decomposition to define a function F : $\mathbb{N}\{0,1\} \rightarrow{ }^{\mathbb{N}}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values $f(n))$ infinitely many times]

