Problem 1. A function $f : A \rightarrow B$ is called countable-to-one if every $b \in B$ has at most countably many preimages. Namely, if for every $b \in B$, the following set is countable:

$$\{a \in A \mid f(a) = b\}$$

- 1. Give an example of a function which is countable-to-one but not one-to-one.
- Suppose that A is a set such that there exists a countable-to-one function f : A → Q. Prove that A is countable. [Hint: countable union of countable sets is countable]

Problem 2. Let $\Pi \subseteq P(A) \setminus \{\emptyset\}$. Define

$$F_{\Pi} = \{ \langle x, X \rangle \in A \times \Pi \mid x \in X \}$$

prove that $F_{\Pi} : A \to P(A)$ is a function of and only if Π is a partition.

Problem 3. Describe the partitions induced from the following equivalence relations (namely, compute A/E in each of the cases):

1.
$$A = \mathbb{Z}, E = \{ \langle z, z' \rangle \in \mathbb{Z}^2 \mid |z| = |z'| \}.$$

2.
$$A = \mathbb{R} \times \mathbb{R}, E = \{ \langle \langle x, y \rangle, \langle a, b \rangle \rangle \in (\mathbb{R} \times \mathbb{R})^2 \mid \min(x, y) = \min(a, b) \}$$

3. for $A = \{0, ..., 10\} \{0, 1\}$. define

$$E = \{ \langle f, g \rangle \in A \times A \mid | \{ n \mid f(n) = 1 \} | = | \{ n \mid g(n) = 1 \} | \}$$

Problem 4. Let $A = \mathbb{N}^{\mathbb{N}}$, and consider the equivalence relation $R = \{\langle f, g \rangle \in (\mathbb{N}^{\mathbb{N}})^2 \mid f(0) = g(0)\}$ in A (no need to prove that). Prove that $A/R \approx \mathbb{N}$.

	Homework 3	
MATH 461	(due February 16)	Feb 9, 2024

Problem 5 (Optional). On \mathbb{N} {0, 1}, define the equivalence relation *E* by *fEg* if and only if there is *N* such that for every $n \ge N$, f(n) = g(n).

Prove that $\mathbb{N}\{0,1\}/E \approx \mathbb{N}\{0,1\}$. [Guidence: In order to prove that $\mathbb{N}\{0,1\} \leq \mathbb{N}\{0,1\}/E$, decompose \mathbb{N} to infinitely many infinite disjoint sets $\mathbb{N} = \bigoplus_{n \in \mathbb{N}} A_n$. Try to use such a decomposition to define a function F: $\mathbb{N}\{0,1\} \rightarrow \mathbb{N}\{0,1\}$ which duplicates each value of the in input value f (i.e. duplicates the values f(n)) infinitely many times]