Homework 4-Sols
MATH 461 (due February 23) Feb 16, 2024

Problem 1. Prove that (Q \ Z, <) ~ (Q, <)

Solotion. We use Cantor’s theorem for DLO’s. The set Q\Z is countable
(as a subset of Q) and for every q1 < g2 in Q \ Z, Let g’ = min(| g + 1], q2),
note that g1 < ¢, and there are no integers in the interval (q1,4’). Let

q = m;q’, then g1 < g < g’ < g2. Since q € (91,9°), 9 € Q\ Z. Similarly we

prove that there are no least and last elements. Hence by Cantor’s theorem,

(Q\Z) =(Q,<)

Problem 2. Prove that every order R over a finite set A can be extended to

a linear order.

Solution. By induction on the number of elements in A. For A = 0,
this is trivial. Let R be a any order on A, and |A| = n + 1. If there is
a € A such that for every b € A, bRa, then we can take A’ = A\ {a}, and
R"=RNA"x A’ This is an order of A” which now have n-elements. by
the induction hypothesis, there is R linear on A’ such that R” C Ry. Note
that since R = R" U {(b,a)b € A’} (as a is R-above every element of A), we
have that R € Ro U {(b,a) | b € A’} = Ry, and R; is a linear ordering of A.
In the general case, since A is finite, we can always find a maximal element
a* (i.e. a € A such that thereisnob € A, b # a and aRb. To prove that, just
assume otherwise, and produce an infinite subset of A). Now extend R to
R*=RU{(b,a*) | b € A\ {a*}}. Check that this is still an order of A, but
now a” is the greatest element, and by the previous case it can be extended

to a linear order.

Problem 3. Let (A, <) be an ordered set. A is called separable if there is

a countable set B € A which is dense in A. Namely, for every a,a’ € A, if
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a < a’ then thereisb € Bsuchthata <b < a’.

(a)

(b)

(©)

Convince yourselves that R is separable (no action required for this

item) Solution. I am convinced.

Consider the set A = "N with the following order:

f < giff f(n) < g(n"), where n* = min{n | f(n) # g(n)}.

Prove that (A, <) is separable.

Solution. the set of all function f : N — N which are eventually
constant is countable (as a countable union of countable set- we have
seen similar arguments in class) and it is dense: indeed, given any two

functions f < g, define

f'(n) =
fm*+1)+1 n>n
Then f” is eventually constant. The minimal # such that f(n) # f’(n)
isn*+1and f(n*+1) < f'(n*+1), thus f < f’. Also, since the minimal

n such that f'(n) # g(n)isn* and f'(n*) = f(n*) < g(n*). Thus f’ < g.

Prove that if A is separable then |A| < 2™,

Solution. Let B € A be countable such that B is countable. Define
f:A—>P(B)by f(a) ={b € B|b < a}. Itis not hard to prove (as we
did in class for to prove that |R| < |P(Q)|) that f is one-to-one.
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1 Preparation for midterm(Optional)

Problem 4. Compute the cardinality of the set of all function f : N —

{0,1} with no consecutive zeros. Namely, there is no n € N such that
fn) = fn+1)=0.
Solution. Let A be the set in the proposition. The cardinality is |A| =

2% Prove it using Cantor-Bernstein, clearly, A a subset of all functions

from N to {0,1} and therefore |A| < 2™. Let us define an injection F :

Nodd :
. Clearly, F(f) € A as it has
f(5) 1€ Neen

no consecutive zeros (since at the odd inputs it returns 1). To see that

0,1} — Aby F(f)(n) =

F is injective, let fi # f, then there is n such that fi(n) # fa(n), then
F(f1)@2n) = fi(n) # f2(n) = F(f2)(2n). Hence F(f1) # F(f2)-

Problem 5. Consider the relation E om N by fEg if and only if for every
n > 100, f(n) = g(n).

1. Prove that E is an equivalence relation.

Soltuion. Easy.

2. Compute the cardinality of "N/E.

Solution. 2™ (Thanks to Max Romano for spotting the previous

mistake)

Problem 6. Let <4, <p be two weak linear orderings of A, B (resp.), where
A, B are disjoint. We define <4 + < which we abbreviate by <, on A U B

as follows:

y<yyex,yeAAx<ay)V(x,ye BAx<py)V(xeAAye€B)
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1. Prove that <, is a linear ordering of A U B.

2. Let N* = {0} x N and define <* on N* by (0, n) <* (0, m) if and only

if m < n. Prove that <* is a linear ordering of N*.
3. Prove that (N*UN, <* + <) ~ (Z, <).

Problem 7. Define recursively Ag = 0 and A,+1 = P(A,). Prove by induc-

tion that for every n, A, € An41.

Solution By induction. For n = 0 Ag = 0 is a subset of every set and
therefore Ag € Aj. Suppose this is true for n — 1 and let us prove that
Ay € Aps1. Let X € A, = P(Ay—1). Then X € A,—1. By the induction
hypothesis, A,_1 C A, and therefore X C A,. By definition X € P(A,) =
A, 1. It follows that A, C A, 41.

Problem 8. Prove that the set of surjections f : N — N is uncountable.

Solution. Denote by A the set of all surjections. Assume otherwise

there is a bijection F : N — A. Define

1
5= n € ®odq

gn) =
F(5)(n)+2 otherwise
Then g is subjective and ¢ € A. By assumption there is n € N such that
F(n) = g. In particular, F(n)(2n) = g(2n) = F(n)(2n) + 1. Hence 0 = 1,

contradiction.



