(due February 23)

Problem 1. Prove that $\langle \mathbb{Q} \setminus \mathbb{Z}, < \rangle \simeq \langle \mathbb{Q}, < \rangle$

Solotion. We use Cantor's theorem for DLO's. The set $\mathbb{Q}\setminus\mathbb{Z}$ is countable (as a subset of \mathbb{Q}) and for every $q_1 < q_2$ in $\mathbb{Q}\setminus\mathbb{Z}$, Let $q' = \min(\lfloor q + 1 \rfloor, q_2)$, note that $q_1 < q'$, and there are no integers in the interval (q_1, q') . Let $q = \frac{q_1+q'}{2}$, then $q_1 < q < q' \le q_2$. Since $q \in (q_1, q')$, $q \in \mathbb{Q}\setminus\mathbb{Z}$. Similarly we prove that there are no least and last elements. Hence by Cantor's theorem, $\langle \mathbb{Q} \setminus \mathbb{Z} \rangle \simeq \langle \mathbb{Q}, < \rangle$

Problem 2. Prove that every order *R* over a finite set *A* can be extended to a linear order.

Solution. By induction on the number of elements in *A*. For $A = \emptyset$, this is trivial. Let *R* be a any order on *A*, and |A| = n + 1. If there is $a \in A$ such that for every $b \in A$, bRa, then we can take $A' = A \setminus \{a\}$, and $R' = R \cap A' \times A'$. This is an order of *A'* which now have *n*-elements. by the induction hypothesis, there is R_0 linear on *A'* such that $R' \subseteq R_0$. Note that since $R = R' \cup \{\langle b, a \rangle b \in A'\}$ (as *a* is *R*-above every element of *A*), we have that $R \subseteq R_0 \cup \{\langle b, a \rangle \mid b \in A'\} = R_1$, and R_1 is a linear ordering of *A*. In the general case, since *A* is finite, we can always find a maximal element a^* (i.e. $a \in A$ such that there is no $b \in A$, $b \neq a$ and aRb. To prove that, just assume otherwise, and produce an infinite subset of *A*). Now extend *R* to $R^* = R \cup \{\langle b, a^* \rangle \mid b \in A \setminus \{a^*\}\}$. Check that this is still an order of *A*, but now a^* is the greatest element, and by the previous case it can be extended to a linear order.

Problem 3. Let $\langle A, < \rangle$ be an ordered set. *A* is called separable if there is a countable set $B \subseteq A$ which is dense in *A*. Namely, for every $a, a' \in A$, if

(due February 23)

- a < a' then there is $b \in B$ such that a < b < a'.
- (a) Convince yourselves that ℝ is separable (no action required for this item) Solution. I am convinced.
- (b) Consider the set $A = \mathbb{N}\mathbb{N}$ with the following order:

$$f < g \text{ iff } f(n^*) < g(n^*)$$
, where $n^* = \min\{n \mid f(n) \neq g(n)\}$.

Prove that $\langle A, \prec \rangle$ is separable.

Solution. the set of all function $f : \mathbb{N} \to \mathbb{N}$ which are eventually constant is countable (as a countable union of countable set- we have seen similar arguments in class) and it is dense: indeed, given any two functions f < g, define

$$f'(n) = \begin{cases} f(n) & n \le n^* \\ f(n^* + 1) + 1 & n > n^* \end{cases}$$

Then f' is eventually constant. The minimal n such that $f(n) \neq f'(n)$ is $n^* + 1$ and $f(n^* + 1) < f'(n^* + 1)$, thus f < f'. Also, since the minimal n such that $f'(n) \neq g(n)$ is n^* and $f'(n^*) = f(n^*) < g(n^*)$. Thus f' < g.

(c) Prove that if *A* is separable then $|A| \leq 2^{\aleph_0}$.

Solution. Let $B \subseteq A$ be countable such that B is countable. Define $f : A \to P(B)$ by $f(a) = \{b \in B \mid b < a\}$. It is not hard to prove (as we did in class for to prove that $|\mathbb{R}| \le |P(\mathbb{Q})|$) that f is one-to-one.

1 Preparation for midterm(Optional)

Problem 4. Compute the cardinality of the set of all function $f : \mathbb{N} \rightarrow \{0, 1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that f(n) = f(n + 1) = 0.

Solution. Let *A* be the set in the proposition. The cardinality is $|A| = 2^{\aleph_0}$. Prove it using Cantor-Bernstein, clearly, *A* a subset of all functions from \mathbb{N} to $\{0, 1\}$ and therefore $|A| \leq 2^{\aleph_0}$. Let us define an injection *F* :

$$^{\mathbb{N}}\{0,1\} \to A \text{ by } F(f)(n) = \begin{cases} 1 & n \in \mathbb{N}_{odd} \\ f(\frac{n}{2}) & n \in \mathbb{N}_{even} \end{cases}. \text{ Clearly, } F(f) \in A \text{ as it has} \end{cases}$$

no consecutive zeros (since at the odd inputs it returns 1). To see that *F* is injective, let $f_1 \neq f_2$, then there is *n* such that $f_1(n) \neq f_2(n)$, then $F(f_1)(2n) = f_1(n) \neq f_2(n) = F(f_2)(2n)$. Hence $F(f_1) \neq F(f_2)$.

Problem 5. Consider the relation *E* om ^NN by *fEg* if and only if for every $n \ge 100$, f(n) = g(n).

1. Prove that *E* is an equivalence relation.

Soltuion. Easy.

2. Compute the cardinality of $\mathbb{N}\mathbb{N}/E$.

Solution. 2^{\aleph_0} (Thanks to Max Romano for spotting the previous mistake)

Problem 6. Let \leq_A , \leq_B be two weak linear orderings of *A*, *B* (resp.), where *A*, *B* are disjoint. We define $\leq_A + \leq_B$ which we abbreviate by \leq_+ on $A \cup B$ as follows:

$$x \leq_+ y \leftrightarrow (x, y \in A \land x \leq_A y) \lor (x, y \in B \land x \leq_B y) \lor (x \in A \land y \in B)$$

3

- 1. Prove that \leq_+ is a linear ordering of $A \cup B$.
- 2. Let $\mathbb{N}^* = \{0\} \times \mathbb{N}$ and define \leq^* on \mathbb{N}^* by $\langle 0, n \rangle \leq^* \langle 0, m \rangle$ if and only if $m \leq n$. Prove that \leq^* is a linear ordering of \mathbb{N}^* .
- 3. Prove that $\langle \mathbb{N}^* \cup \mathbb{N}, \leq^* + \leq \rangle \simeq \langle \mathbb{Z}, \leq \rangle$.

Problem 7. Define recursively $A_0 = \emptyset$ and $A_{n+1} = P(A_n)$. Prove by induction that for every $n, A_n \subseteq A_{n+1}$.

Solution By induction. For n = 0 $A_0 = \emptyset$ is a subset of every set and therefore $A_0 \subseteq A_1$. Suppose this is true for n - 1 and let us prove that $A_n \subseteq A_{n+1}$. Let $X \in A_n = P(A_{n-1})$. Then $X \subseteq A_{n-1}$. By the induction hypothesis, $A_{n-1} \subseteq A_n$ and therefore $X \subseteq A_n$. By definition $X \in P(A_n) = A_{n+1}$. It follows that $A_n \subseteq A_{n+1}$.

Problem 8. Prove that the set of surjections $f : \mathbb{N} \to \mathbb{N}$ is uncountable.

Solution. Denote by *A* the set of all surjections. Assume otherwise there is a bijection $F : \mathbb{N} \to A$. Define

$$g(n) = \begin{cases} \frac{n-1}{2} & n \in \ltimes_{odd} \\ F(\frac{n}{2})(n) + 2 & otherwise \end{cases}$$

Then *g* is subjective and $g \in A$. By assumption there is $n \in \mathbb{N}$ such that F(n) = g. In particular, F(n)(2n) = g(2n) = F(n)(2n) + 1. Hence 0 = 1, contradiction.