Homework 4-Sols

Problem 1. Prove that $\langle\mathbb{Q} \backslash \mathbb{Z},<\rangle \simeq\langle\mathbb{Q},<\rangle$

Solotion. We use Cantor's theorem for DLO's. The set $\mathbb{Q} \backslash \mathbb{Z}$ is countable (as a subset of \mathbb{Q}) and for every $q_{1}<q_{2}$ in $\mathbb{Q} \backslash \mathbb{Z}$, Let $q^{\prime}=\min \left(\lfloor q+1\rfloor, q_{2}\right)$, note that $q_{1}<q^{\prime}$, and there are no integers in the interval $\left(q_{1}, q^{\prime}\right)$. Let $q=\frac{q_{1}+q^{\prime}}{2}$, then $q_{1}<q<q^{\prime} \leq q_{2}$. Since $q \in\left(q_{1}, q^{\prime}\right), q \in \mathbb{Q} \backslash \mathbb{Z}$. Similarly we prove that there are no least and last elements. Hence by Cantor's theorem, $\langle\mathbb{Q} \backslash \mathbb{Z}\rangle \simeq\langle\mathbb{Q},<\rangle$

Problem 2. Prove that every order R over a finite set A can be extended to a linear order.

Solution. By induction on the number of elements in A. For $A=\emptyset$, this is trivial. Let R be a any order on A, and $|A|=n+1$. If there is $a \in A$ such that for every $b \in A, b R a$, then we can take $A^{\prime}=A \backslash\{a\}$, and $R^{\prime}=R \cap A^{\prime} \times A^{\prime}$. This is an order of A^{\prime} which now have n-elements. by the induction hypothesis, there is R_{0} linear on A^{\prime} such that $R^{\prime} \subseteq R_{0}$. Note that since $R=R^{\prime} \cup\left\{\langle b, a\rangle b \in A^{\prime}\right\}$ (as a is R-above every element of A), we have that $R \subseteq R_{0} \cup\left\{\langle b, a\rangle \mid b \in A^{\prime}\right\}=R_{1}$, and R_{1} is a linear ordering of A. In the general case, since A is finite, we can always find a maximal element a^{*} (i.e. $a \in A$ such that there is no $b \in A, b \neq a$ and $a R b$. To prove that, just assume otherwise, and produce an infinite subset of A). Now extend R to $R^{*}=R \cup\left\{\left\langle b, a^{*}\right\rangle \mid b \in A \backslash\left\{a^{*}\right\}\right\}$. Check that this is still an order of A, but now a^{*} is the greatest element, and by the previous case it can be extended to a linear order.

Problem 3. Let $\langle A,<\rangle$ be an ordered set. A is called separable if there is a countable set $B \subseteq A$ which is dense in A. Namely, for every $a, a^{\prime} \in A$, if

Homework 4-Sols

MATH 461
$a<a^{\prime}$ then there is $b \in B$ such that $a<b<a^{\prime}$.
(a) Convince yourselves that \mathbb{R} is separable (no action required for this item) Solution. I am convinced.
(b) Consider the set $A=\mathbb{N}^{\mathbb{N}}$ with the following order:

$$
f<g \text { iff } f\left(n^{*}\right)<g\left(n^{*}\right), \text { where } n^{*}=\min \{n \mid f(n) \neq g(n)\}
$$

Prove that $\langle A,<\rangle$ is separable.
Solution. the set of all function $f: \mathbb{N} \rightarrow \mathbb{N}$ which are eventually constant is countable (as a countable union of countable set- we have seen similar arguments in class) and it is dense: indeed, given any two functions $f<g$, define

$$
f^{\prime}(n)= \begin{cases}f(n) & n \leq n^{*} \\ f\left(n^{*}+1\right)+1 & n>n^{*}\end{cases}
$$

Then f^{\prime} is eventually constant. The minimal n such that $f(n) \neq f^{\prime}(n)$ is $n^{*}+1$ and $f\left(n^{*}+1\right)<f^{\prime}\left(n^{*}+1\right)$, thus $f<f^{\prime}$. Also, since the minimal n such that $f^{\prime}(n) \neq g(n)$ is n^{*} and $f^{\prime}\left(n^{*}\right)=f\left(n^{*}\right)<g\left(n^{*}\right)$. Thus $f^{\prime}<g$.
(c) Prove that if A is separable then $|A| \leq 2^{\aleph_{0}}$.

Solution. Let $B \subseteq A$ be countable such that B is countable. Define $f: A \rightarrow P(B)$ by $f(a)=\{b \in B \mid b<a\}$. It is not hard to prove (as we did in class for to prove that $|\mathbb{R}| \leq|P(\mathbb{Q})|)$ that f is one-to-one.

Homework 4-Sols

MATH 461

1 Preparation for midterm(Optional)

Problem 4. Compute the cardinality of the set of all function $f: \mathbb{N} \rightarrow$ $\{0,1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that $f(n)=f(n+1)=0$.

Solution. Let A be the set in the proposition. The cardinality is $|A|=$ $2^{\aleph_{0}}$. Prove it using Cantor-Bernstein, clearly, A a subset of all functions from \mathbb{N} to $\{0,1\}$ and therefore $|A| \leq 2^{\aleph_{0}}$. Let us define an injection F : $\mathbb{N}\{0,1\} \rightarrow A$ by $F(f)(n)=\left\{\begin{array}{ll}1 & n \in \mathbb{N}_{\text {odd }} \\ f\left(\frac{n}{2}\right) & n \in \mathbb{N}_{\text {even }}\end{array}\right.$. Clearly, $F(f) \in A$ as it has no consecutive zeros (since at the odd inputs it returns 1). To see that F is injective, let $f_{1} \neq f_{2}$, then there is n such that $f_{1}(n) \neq f_{2}(n)$, then $F\left(f_{1}\right)(2 n)=f_{1}(n) \neq f_{2}(n)=F\left(f_{2}\right)(2 n)$. Hence $F\left(f_{1}\right) \neq F\left(f_{2}\right)$.

Problem 5. Consider the relation E om ${ }^{\mathbb{N}} \mathbb{N}$ by $f E g$ if and only if for every $n \geq 100, f(n)=g(n)$.

1. Prove that E is an equivalence relation.

Soltuion. Easy.
2. Compute the cardinality of ${ }^{\mathbb{N}} \mathbb{N} / E$.

Solution. $2^{\boldsymbol{N}_{0}}$ (Thanks to Max Romano for spotting the previous mistake)

Problem 6. Let \leq_{A}, \leq_{B} be two weak linear orderings of A, B (resp.), where A, B are disjoint. We define $\leq_{A}+\leq_{B}$ which we abbreviate by \leq_{+}on $A \cup B$ as follows:

$$
x \leq_{+} y \leftrightarrow\left(x, y \in A \wedge x \leq_{A} y\right) \vee\left(x, y \in B \wedge x \leq_{B} y\right) \vee(x \in A \wedge y \in B)
$$

Homework 4-Sols

MATH 461

1. Prove that \leq_{+}is a linear ordering of $A \cup B$.
2. Let $\mathbb{N}^{*}=\{0\} \times \mathbb{N}$ and define \leq^{*} on \mathbb{N}^{*} by $\langle 0, n\rangle \leq^{*}\langle 0, m\rangle$ if and only if $m \leq n$. Prove that \leq^{*} is a linear ordering of \mathbb{N}^{*}.
3. Prove that $\left\langle\mathbb{N}^{*} \cup \mathbb{N}, \leq^{*}+\leq\right\rangle \simeq\langle\mathbb{Z}, \leq\rangle$.

Problem 7. Define recursively $A_{0}=\emptyset$ and $A_{n+1}=P\left(A_{n}\right)$. Prove by induction that for every $n, A_{n} \subseteq A_{n+1}$.

Solution By induction. For $n=0 A_{0}=\emptyset$ is a subset of every set and therefore $A_{0} \subseteq A_{1}$. Suppose this is true for $n-1$ and let us prove that $A_{n} \subseteq A_{n+1}$. Let $X \in A_{n}=P\left(A_{n-1}\right)$. Then $X \subseteq A_{n-1}$. By the induction hypothesis, $A_{n-1} \subseteq A_{n}$ and therefore $X \subseteq A_{n}$. By definition $X \in P\left(A_{n}\right)=$ A_{n+1}. It follows that $A_{n} \subseteq A_{n+1}$.

Problem 8. Prove that the set of surjections $f: \mathbb{N} \rightarrow \mathbb{N}$ is uncountable.

Solution. Denote by A the set of all surjections. Assume otherwise there is a bijection $F: \mathbb{N} \rightarrow A$. Define

$$
g(n)= \begin{cases}\frac{n-1}{2} & n \in \ltimes_{\text {odd }} \\ F\left(\frac{n}{2}\right)(n)+2 & \text { otherwise }\end{cases}
$$

Then g is subjective and $g \in A$. By assumption there is $n \in \mathbb{N}$ such that $F(n)=g$. In particular, $F(n)(2 n)=g(2 n)=F(n)(2 n)+1$. Hence $0=1$, contradiction.

