Homework 4

Problem 1. Prove that $\langle\mathbb{Q} \backslash \mathbb{Z},<\rangle \simeq\langle\mathbb{Q},<\rangle$

Problem 2. Prove that every order R over a finite set A can be extended to a linear order.

Problem 3. Let $\langle A,<\rangle$ be an ordered set. A is called separable if there is a countable set $B \subseteq A$ which is dense in A. Namely, for every $a, a^{\prime} \in A$, if $a<a^{\prime}$ then there is $b \in B$ such that $a<b<a^{\prime}$.
(a) Convince yourselves that \mathbb{R} is separable (no action required for this item)
(b) Consider the set $A={ }^{\mathbb{N}} \mathbb{N}$ with the following order:

$$
f<g \text { iff } f\left(n^{*}\right)<g\left(n^{*}\right), \text { where } n^{*}=\min \{n \mid f(n) \neq g(n)\} .
$$

Prove that $\langle A,<\rangle$ is separable.
(c) Prove that if A is separable then $|A| \leq 2^{\aleph_{0}}$.

1 Preparation for midterm(Optional)

Problem 4. Compute the cardinality of the set of all function $f: \mathbb{N} \rightarrow$ $\{0,1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that $f(n)=f(n+1)=0$.

Problem 5. Consider the relation E om ${ }^{\mathbb{N}} \mathbb{N}$ by $f E g$ if and only if for every $n \geq 100, f(n)=g(n)$.

1. Prove that E is an equivalence relation.

Homework 4

MATH 461
2. Compute the cardinality of ${ }^{\mathbb{N}} \mathbb{N} / E$.

Problem 6. Let \leq_{A}, \leq_{B} be two weak linear orderings of A, B (resp.), where A, B are disjoint. We define $\leq_{A}+\leq_{B}$ which we abbreviate by \leq_{+}on $A \cup B$ as follows:

$$
x \leq_{+} y \leftrightarrow\left(x, y \in A \wedge x \leq_{A} y\right) \vee\left(x, y \in B \wedge x \leq_{B} y\right) \vee(x \in A \wedge y \in B)
$$

1. Prove that \leq_{+}is a linear ordering of $A \cup B$.
2. Let $\mathbb{N}^{*}=\{0\} \times \mathbb{N}$ and define \leq^{*} on \mathbb{N}^{*} by $\langle 0, n\rangle \leq^{*}\langle 0, m\rangle$ if and only if $m \leq n$. Prove that \leq^{*} is a linear ordering of \mathbb{N}^{*}.
3. Prove that $\left\langle\mathbb{N}^{*} \cup \mathbb{N}, \leq^{*}+\leq\right\rangle \simeq\langle\mathbb{Z}, \leq\rangle$.

Problem 7. Define recursively $A_{0}=\emptyset$ and $A_{n+1}=P\left(A_{n}\right)$. Prove by induction that for every $n, A_{n} \subseteq A_{n+1}$.

Problem 8. Prove that the set of surjections $f: \mathbb{N} \rightarrow \mathbb{N}$ is uncountable.

