Problem 1. Prove that $\langle \mathbb{Q} \setminus \mathbb{Z}, < \rangle \simeq \langle \mathbb{Q}, < \rangle$

Problem 2. Prove that every order *R* over a finite set *A* can be extended to a linear order.

Problem 3. Let $\langle A, < \rangle$ be an ordered set. *A* is called separable if there is a countable set $B \subseteq A$ which is dense in *A*. Namely, for every $a, a' \in A$, if a < a' then there is $b \in B$ such that a < b < a'.

- (a) Convince yourselves that R is separable (no action required for this item)
- (b) Consider the set $A = \mathbb{N}\mathbb{N}$ with the following order:

 $f < g \text{ iff } f(n^*) < g(n^*)$, where $n^* = \min\{n \mid f(n) \neq g(n)\}$.

Prove that $\langle A, \prec \rangle$ is separable.

(c) Prove that if *A* is separable then $|A| \leq 2^{\aleph_0}$.

1 Preparation for midterm(Optional)

Problem 4. Compute the cardinality of the set of all function $f : \mathbb{N} \rightarrow \{0, 1\}$ with no consecutive zeros. Namely, there is no $n \in \mathbb{N}$ such that f(n) = f(n + 1) = 0.

Problem 5. Consider the relation *E* om $\mathbb{N}\mathbb{N}$ by *fEg* if and only if for every $n \ge 100$, f(n) = g(n).

1. Prove that *E* is an equivalence relation.

(due February 23)

2. Compute the cardinality of $\mathbb{N}\mathbb{N}/E$.

Problem 6. Let \leq_A , \leq_B be two weak linear orderings of *A*, *B* (resp.), where *A*, *B* are disjoint. We define $\leq_A + \leq_B$ which we abbreviate by \leq_+ on $A \cup B$ as follows:

$$x \leq_+ y \leftrightarrow (x, y \in A \land x \leq_A y) \lor (x, y \in B \land x \leq_B y) \lor (x \in A \land y \in B)$$

- 1. Prove that \leq_+ is a linear ordering of $A \cup B$.
- 2. Let $\mathbb{N}^* = \{0\} \times \mathbb{N}$ and define \leq^* on \mathbb{N}^* by $\langle 0, n \rangle \leq^* \langle 0, m \rangle$ if and only if $m \leq n$. Prove that \leq^* is a linear ordering of \mathbb{N}^* .
- 3. Prove that $\langle \mathbb{N}^* \cup \mathbb{N}, \leq^* + \leq \rangle \simeq \langle \mathbb{Z}, \leq \rangle$.

Problem 7. Define recursively $A_0 = \emptyset$ and $A_{n+1} = P(A_n)$. Prove by induction that for every $n, A_n \subseteq A_{n+1}$.

Problem 8. Prove that the set of surjections $f : \mathbb{N} \to \mathbb{N}$ is uncountable.