Homework 5

Problem 1. Which of the following wffs are tautologies?
(a) $(Q \vee(\neg(P \Rightarrow Q)))$.
(b) $((P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((P \wedge Q) \Rightarrow R))$.

Solutions

(1) No, for example the TVA $V(Q)=V(P)=F$ makes the formula false.
(2) This is a tautology. (The proof uses truth tables for example)

Problem 2. In each of the following items, determine if Σ tautologically implies ϕ.

1. $\Sigma=\{(A \wedge(B \Rightarrow(\neg C))),(B \vee C)\}, \phi=(\neg C)$
2. $\Sigma=\{(A \Rightarrow(B \vee(\neg C))),(A \wedge C),(D \Rightarrow(\neg B))\}, \phi=(\neg D)$.

Solution.

(1) Σ does not tautologically implies ϕ, for example the TVA $V(A)=$ $V(C)=T, V(B)=F$, makes $(B \Rightarrow(\neg C))$ true and therefore $\bar{V}(A \cap(B \Rightarrow$ $(\neg(C))))=T$. Also $\bar{V}(B \vee C)=T$ since $V(C)=T$, and therefore V satisfies Σ. However, $\bar{V}(\neg C)=F$.
(2) Suppose towards a contradiction that V witnesses that Σ does not tautologically implies ϕ, then $\bar{V}(\neg D)=F$ and therefore $V(D)=T$. Also $\bar{V}(D \Rightarrow(\neg B))=T$ and therefore $V(B)=F$ and also $\bar{V}(A \wedge C)=T$ and therefore $V(A)=V(C)=T$. Bu then $\bar{V}(B \vee(\neg C))=F$ and $\bar{V}(A \Rightarrow(B \vee(\neg C)))=F$, contracidtion.

Homework 5

Problem 3. Let $\left\{S_{n} \mid n \in \mathbb{N}\right\}$ be a collection of finite subsets of \mathbb{N} such that for each finite subset $F \subseteq \mathbb{N}$, there exists a subset $A_{F} \subseteq \mathbb{N}$ with $\left|A_{F} \cap S_{n}\right|=1$ for all $n \in F$. Use the Compactness Theorem to prove that there exists a subset $A \subseteq \mathbb{N}$ such that $\left|A \cap S_{n}\right|=1$ for all $n \in \mathbb{N}$.
solution Let us define the sentence symbols $C_{n, m}$ for each $n \in \mathbb{N}$ and $m \in S_{n}$. Since each S_{n} is finite, there are only countably many such $C_{n, m}$'s. Consider the following wff's:
(1) $\alpha_{n}=\left(C_{n, m_{1}} \vee \ldots \vee C_{n, m_{k}}\right)$ for every $n<\omega$ where $S_{n}=\left\{m_{1}, \ldots, m_{k}\right\}$.
(2) $\beta_{n, m, k}=\neg\left(C_{n, m} \wedge C_{n, k}\right)$ for each $n<\omega$ and distinct $m, k \in S_{n}$.

Let $\Sigma=\left\{\alpha_{n} \mid n \in \mathbb{N}\right\} \cup\left\{\beta_{n, m, k} \mid n \in \mathbb{N}, m \neq k \in S_{n}\right\}$. Then Σ is countable. Our first claim is that Σ is finitely satisfiable:

Let $\Sigma_{0} \subseteq \Sigma$ be finite. Let F be the (finite) set of all n 's which are mentioned in a formula in Σ_{0}. By the assumption, there is $A_{F} \subseteq \mathbb{N}$ such that $\left|A_{F} \cap S_{n}\right|=1$ for all $n \in F$. Define $V\left(C_{n, m}\right)=T$ iff $C_{n, m} \in A_{F}$. Let us prove that V satisfies Σ_{0}. Indeed any formula $\alpha_{n} \in \Sigma_{0} n \in F$ and therefore since there is $m \in A_{F} \cap S_{n}$ we will have for some $m \in S_{n}$ that $V\left(C_{n, m}\right)=T$ and therefore $\bar{V}\left(\alpha_{n}\right)=T$. If $\beta_{n, m, k} \in \Sigma_{n}$ for some $m \neq k \in S_{n}$, then $n \in F$ and since $\left|A_{F} \cap S_{n}\right|=1$ not both $k, m \in A_{F}$. Hence not both $C_{n, k}$ and $C_{n, m}$ are true under V. It follows that $\bar{V}\left(\beta_{n, m, k}\right)=T$.

We conclude that Σ is finitely satisfiable and therefore by the conmpactness theorem it is satisfiable. Let V be a TVA witnessing that Σ is satisfiable. Define

$$
A=\left\{m \in \mathbb{N} \mid m \in S_{n}, V\left(C_{n, m}\right)=T\right\}
$$

Homework 5

and let us prove that $\left|A \cap S_{n}\right|=1$ for all $n \in \mathbb{N}$. Indeed since $\bar{V}\left(\alpha_{n}\right)=T$, there is $m \in S_{n}$ such that $V\left(C_{n, m}\right)=T$ and therefore $\left|A \cap S_{n}\right| \geq 1$. Suppose towards a contradiction that $\left|A \cap S_{n}\right|>1$ and find $m \neq k \in S_{n} \cap A$ and therefore $V\left(C_{n, k}\right)=V\left(C_{n, m}\right)=T$ but then $V\left(\beta_{n, m, k}\right)=F$, contradicting the fact that V satisfies Σ.

Problem 4 (Optional). In a fictional village, every inhabitant is either a truth-teller (everything they say is true) or a liar (everything they say is false). Arnie and Barnie live in the village. Suppose that Arnie says, "If I am a truth-teller, then so is Bernie." Determine if Arnie and Barnie truth-tellers or liars? Motivate your answer.
[Hint: Let A be the statement "Arnie is a truth-teller" and let B be the statement "Barnie is a truth-teller." Arnie's statement can then be expressed as $A \Rightarrow B$. Create a truth table for Arnie's statement...]

Problem 5 (Optional). (a) Prove that if ϕ, ϕ^{\prime} and ψ, ψ^{\prime} are tautologically equivalent wff's, then so are the pairs:
(i) $(\phi \wedge \psi),\left(\phi^{\prime} \wedge \psi^{\prime}\right)$.
(ii) $(\phi \vee \psi),\left(\phi^{\prime} \vee \psi^{\prime}\right)$.
(iii) $(\phi \Rightarrow \psi),\left(\phi^{\prime} \Rightarrow \psi^{\prime}\right)$.
(iv) ($\neg \phi),\left(\neg \phi^{\prime}\right)$.
(b) Prove that every wff is tautologically equivalent to a statement which only has the logical connectives \vee, \neg.
Prove that every wff is tautologically equivalent to a wff where the only logical connectives used are \vee and \neg. [Hint: by induction on the complexity of the formula].

