Problem 1. Which of the following wffs are tautologies?

(a) $(Q \lor (\neg (P \Rightarrow Q))).$

(b) $((P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow ((P \land Q) \Rightarrow R)).$

Problem 2. In each of the following items, determine if Σ tautologically implies ϕ .

1.
$$\Sigma = \{(A \land (B \Rightarrow (\neg C))), (B \lor C)\}, \phi = (\neg C)$$

2.
$$\Sigma = \{(A \Rightarrow (B \lor (\neg C))), (A \land C), (D \Rightarrow (\neg B))\}, \phi = (\neg D).$$

Problem 3. Let $\{S_n \mid n \in \mathbb{N}\}$ be a collection of finite subsets of \mathbb{N} such that for each finite subset $F \subseteq \mathbb{N}$, there exists a subset $A_F \subseteq \mathbb{N}$ with $|A_F \cap S_n| = 1$ for all $n \in F$. Use the Compactness Theorem to prove that there exists a subset $A \subseteq \mathbb{N}$ such that $|A \cap S_n| = 1$ for all $n \in \mathbb{N}$.

Problem 4 (Optional). In a fictional village, every inhabitant is either a truth-teller (everything they say is true) or a liar (everything they say is false). Arnie and Barnie live in the village. Suppose that Arnie says, "If I am a truth-teller, then so is Bernie." Determine if Arnie and Barnie truth-tellers or liars? Motivate your answer.

[Hint: Let A be the statement "Arnie is a truth-teller" and let B be the statement "Barnie is a truth-teller." Arnie's statement can then be expressed as $A \Rightarrow B$. Create a truth table for Arnie's statement...]

- **Problem 5** (Optional). (a) Prove that if ϕ , ϕ' and ψ , ψ' are tautologically equivalent wff's, then so are the pairs:
 - (i) $(\phi \land \psi)$, $(\phi' \land \psi')$.

1

MATH 461

- (ii) $(\phi \lor \psi)$, $(\phi' \lor \psi')$.
- (iii) $(\phi \Rightarrow \psi)$, $(\phi' \Rightarrow \psi')$.
- (iv) $(\neg \phi)$, $(\neg \phi')$.
- (b) Prove that every wff is tautologically equivalent to a statement which only has the logical connectives ∨, ¬.

Prove that every wff is tautologically equivalent to a wff where the only logical connectives used are \lor and \neg . [Hint: by induction on the complexity of the formula].