Problem 1. If $\langle T, \prec \rangle$ is a tree, then the following are equivalent:

- (i) *T* is finitely branching.
- (ii) $\mathcal{L}_n(T)$ is finite for all $n \ge 0$.

Solution.

MATH 461

- (i) Suppose that *T* is finitely branching, let us prove by induction that $\mathcal{L}_n(T)$ is finite for every *n*. For n = 0 $\mathcal{L}_0(T) = \{t_0\}$ where t_0 is the root of *T* and therefore finite Suppose that $\mathcal{L}_n(T)$ is finite. Note that $\mathcal{L}_{n+1}(T) = \bigcup_{t \in \mathcal{L}_n(T)} \operatorname{Succ}_T(t)$. Since *T* is finitely branching, $\operatorname{Succ}_T(t)$ is finite for every *t* and by the induction hypothesis, $\mathcal{L}_n(T)$ is finite. Hence $\mathcal{L}_n(T)$ is a finite union of finite sets which is finite.
- (ii) Suppose that $\mathcal{L}_n(T)$ is finite for all $n \ge 0$. Then for every $t \in T$, Succ_T(t) $\subseteq \mathcal{L}_{ht_T(t)+1}(T)$. By our initial assumption $\mathcal{L}_{ht_T(t)+1}(T)$ is finite, thus Succ_T(t) is finite.

Problem 2. Use König's Lemma to prove that if $\langle A, \prec \rangle$ is a countable partial order, then there exists a linear ordering < of A which extends <.

Solution. enumerate $A = \{a_n \mid n \in \mathbb{N}\}$. A node in the n^{th} -level of tree T is any extension R of $\langle \cap \{a_0, ..., a_n\} \times \{a_0, ..., a_n\}$ to a linear ordering of $\{a_0, ..., a_n\}$. For example $\mathcal{L}_0(T) = \{\emptyset\}$ and \emptyset linearly orders $\{a_0\}$. If $a_0 < a_1$, then $\mathcal{L}_1(T) = \{\{\langle a_0, a_1 \rangle\}\}$ and similarly if $a_1 < a_0$. But if a_0, a_1 are incomparable in \langle , then we let $\mathcal{L}_1(T) = \{\{\langle a_0, a_1 \rangle\}, \{\langle a_1, a_2 \rangle\}\}$. The tree T is ordered by inclusion. Clearly, each level of T is non-empty since any finite order can be extended to a linear order. By König's Lemma, let

 $b = \{R_n \mid n \in \mathbb{N}\}\$ be a branch through *T*, prove that $R = \bigcup_{n \in \mathbb{N}} R_n$ is a linear ordering of *A* which extends <.

Problem 3. In class we proved Ramsey's theorem for countable graphs, that is: If $c : [\mathbb{N}]^2 \to \{0, 1\}$ is any coloring, then there is $H \subseteq \mathbb{N}$ infinite such that $c \upharpoonright [H]^2$ is constant. We called such *H* a *c*-monochromatic set.

- (i) Prove that for any r ∈ N and for every c : [N]² → {0, 1, ..., r} there is an infinite set H ⊆ N which is *c*-monochromatic.
- (ii) (Optional) Prove that for any $r, s \in \mathbb{N}$ and for every $c : [\mathbb{N}]^s \rightarrow \{0, 1, ..., r\}$ there is an infinite set $H \subseteq \mathbb{N}$ which is *c*-monochromatic.

Solution. The solution is very similar to the one in class. Here is a link to a proof

Problem 4. In this exercise, you will prove the Compactness Theorem from König's Lemma. Given a countable $\Sigma \subseteq \overline{\mathcal{L}}$ which is finitely satisfiable, let us define a tree. First we enumerate $\Sigma = \{\sigma_0, \sigma_1, \sigma_2, ...\}$, and let $\mathcal{L} = \{v_0, v_1, ...\}$ be an enumeration of all the sentence symbols.

(a) Each function φ : {0, ..., n} → {0, 1}, can be identified with a functions
φ* : Γ_n → {T, F} where Γ_n = {v₀, ..., v_n}. Describe the identification.
No proof required.

Solution. We identify ϕ with the function $\phi^*(v_i) = T$ if and only if $\phi(i) = 1$.

(b) Let $\Sigma_n \subseteq \Sigma$ be the set of all $\sigma \in \Sigma$ which mentions only sentence symbols from Γ_n . Show by induction on the length of σ , that for any

TVA *V*, the value of $\overline{V}(\sigma)$ depends only on $V \upharpoonright \Gamma_n$, namely if V_1 , V_2 are TVA's such that $V_1 \upharpoonright \Gamma_n = V_2 \upharpoonright \Gamma_n$ then $V_1(\sigma) = V_2(\sigma)$.

Solution. If σ is a sentence symbol then $\in \Gamma_n$ and therefore if $V_1 \upharpoonright \Gamma_n = V_2 \upharpoonright \Gamma_n$ then $V_1(\sigma) = V_2(\sigma)$. Suppose that this is true for α, β which mentions only Γ_n , and consider the following cases:

- (1) $\overline{V}_1(\neg \alpha) = T$ iff $\overline{V}_1(\alpha) = F$ iff $\overline{V}_2(\alpha) = F$ iff $\overline{V}_2(\neg \alpha) = T$.
- (2) $\overline{V}_1(\alpha \wedge \beta) = T$ iff $\overline{V}_1(\alpha) = T$ and $\overline{V}_1(\beta) = T$ iff $\overline{V}_2(\alpha) = T$ and $\overline{V}_2(\beta) = T$ iff $\overline{V}_2(\alpha \wedge \beta) = T$.

The other cases are similar.

(c) Define the tree *T* ⊆ *T*₂ as follows: at level *n*, we put all the function φ such that some (any) TVA which extends φ^{*} satisfies Σ_n. We order *T* as usual by end-extension of functions. Prove that if *T* has an infinite branch then Σ is satisfiable.

Solution. Let $b = \{b_n \mid n \in \mathbb{N}\}$ be an infinite branch. then $b_n \in \mathcal{L}_n(T)$ and $b_n : \{0, ..., n\} \rightarrow \{0, 1\}$. Let $\phi = \bigcup_{n \in \mathbb{N}} b_n$. Then ϕ is a function since the order of the tree is just inclusion and for every n, $\phi \upharpoonright \{0, ..., n\} = b_n$. Let us prove that $\phi^* = V$ satisfies Σ . Let $\sigma \in \Sigma$, then there is n such that $\sigma \in \Gamma_n$. By assumption, there is ψ^* satisfying σ such that ψ extends b_n . Since both V and ψ^* agree on Γ (as both ϕ, ψ extend b_n), by the previous item, $V(\sigma) = \Psi^*(\sigma) = T$.

(d) Show that for every *n*, *L_n(T)* ≠ Ø. Namely, prove that for each *n*, there is φ : {0, ..., n} → {0, 1} such that φ* extends to a TVA which satisfy Σ_n. This proof is done in a few steps:

- (a) Prove the existence of φ^{*} in case Σ_n is finite. Solution. This is because Σ is finitely satisfiable.
- (b) If Σ_n is infinite, enumerate Σ_n = {σ₀, σ₁, ...} and for each k prove that there is a TVA φ_k such that satisfying {σ₀, ..., σ_k}. Solution. Agaim, this is because Σ is finitely satisfiable.
- (c) Use the pigeonhole principle to find a single φ : {0, ..., n} → {0, 1} such that for infinitely many k's φ_k ↾ {v₀, ..., v_n} = φ*. Solution. There are only finitely many possibilities for φ_n ↾ {v₀, ..., v_n} so there must be infinitely many k's such that φ_k ↾ {v₀, ..., v_n} = φ*.
- (d) Prove that $\phi \in \mathcal{L}_n(T)$.

Solution. let $\sigma \in \Sigma_n$, then there is *i* such that $\sigma = \sigma_i$. Pick $k \ge i$ so that $\phi_k \upharpoonright \{v_0, ..., v_n\} = \phi^*$, then $\phi_k(\sigma_i) = \phi^*(\sigma_i)$ (since they agree on Γ_n) and by the choice of ϕ_k , $\phi^*(\sigma_i) = T$. $\phi_i(\sigma_i)$

(e) Use König's Theorem to show that *T* has an infinite branch and deduce that Σ is satisfiable. **Solution.** By König's Lemma, there is a branch ϕ and by (*c*) we are done.