Problem 1. If $\langle T, \prec \rangle$ is a tree, then the following are equivalent:

(i) *T* is finitely branching.

MATH 461

(ii) $\mathcal{L}_n(T)$ is finite for all $n \ge 0$.

Problem 2. Use König's Lemma to prove that if $\langle A, \prec \rangle$ is a countable partial order, then there exists a linear ordering < of A which extends <.

Problem 3. In class we proved Ramsey's theorem for countable graphs, that is: If $c : [\mathbb{N}]^2 \to \{0, 1\}$ is any coloring, then there is $H \subseteq \mathbb{N}$ infinite such that $c \upharpoonright [H]^2$ is constant. We called such H a c-monochromatic set.

- (i) Prove that for any r ∈ N and for every c : [N]² → {0, 1, ..., r} there is an infinite set H ⊆ N which is *c*-monochromatic.
- (ii) (Optional) Prove that for any $r, s \in \mathbb{N}$ and for every $c : [\mathbb{N}]^s \rightarrow \{0, 1, ..., r\}$ there is an infinite set $H \subseteq \mathbb{N}$ which is *c*-monochromatic.

Problem 4. In this exercise, you will prove the Compactness Theorem from König's Lemma. Given a countable $\Sigma \subseteq \overline{\mathcal{L}}$ which is finitely satisfiable, let us define a tree. First we enumerate $\Sigma = \{\sigma_0, \sigma_1, \sigma_2, ...\}$, and let $\mathcal{L} = \{v_0, v_1, ...\}$ be an enumeration of all the sentence symbols.

- (a) Each function φ : {0, ..., n} → {0, 1}, can be identified with a functions
 φ* : Γ_n → {T, F} where Γ_n = {v₀, ..., v_n}. Describe the identification.
 No proof required.
- (b) Let $\Sigma_n \subseteq \Sigma$ be the set of all $\sigma \in \Sigma$ which mentions only sentence symbols from Γ_n . Show by induction on the length of σ , that for any TVA *V*, the value of $\overline{V}(\sigma)$ depends only on $V \upharpoonright \Gamma_n$, namely if V_1, V_2 are TVA's such that $V_1 \upharpoonright \Gamma_n = V_2 \upharpoonright \Gamma_n$ then $V_1(\sigma) = V_2(\sigma)$.

1

- (c) Define the tree *T* ⊆ *T*₂ as follows: at level *n*, we put all the function φ such that some (any) TVA which extends φ^{*} satisfies Σ_n. We order *T* as usual by end-extension of functions. Prove that if *T* has an infinite branch then Σ is satisfiable.
- (d) Show that for every *n*, *L_n(T)* ≠ Ø. Namely, prove that for each *n*, there is φ : {0, ..., n} → {0, 1} such that φ* extends to a TVA which satisfy Σ_n. This proof is done in a few steps:
 - (a) Prove the existence of ϕ^* in case Σ_n is finite.
 - (b) If Σ_n is infinite, enumerate $\Sigma_n = \{\sigma_0, \sigma_1, ...\}$ and for each *k* prove that there is a TVA ϕ_k such that satisfying $\{\sigma_0, ..., \sigma_k\}$.
 - (c) Use the pigeonhole principle to find a single $\phi : \{0, ..., n\} \rightarrow \{0, 1\}$ such that for infinitely many *k*'s $\phi_k \upharpoonright \{v_0, ..., v_n\} = \phi^*$.
 - (d) Prove that $\phi \in \mathcal{L}_n(T)$.

MATH 461

 (e) Use König's Theorem to show that *T* has an infinite branch and deduce that Σ is satisfiable.