March 22, 2024

(due March 29)

Problem 1. Let \mathcal{L} be the language where the non-logical 2-places function symbols are +, \times and $\bar{1}$ is a non-logical constant symbol and there are no predicate symbols.

(a) Let $\mathfrak{a} = \langle \mathbb{R}, +^{\mathfrak{a}}, \times^{\mathfrak{a}}, \bar{1}^{\mathfrak{a}} \rangle$ be the \mathcal{L} -structure where $+^{\mathfrak{a}}, \times^{\mathfrak{a}}, \bar{1}^{\mathfrak{a}}$ are the usual $+, \cdot, 1$ on reals. Denote by \bar{n} the term $\underline{\bar{1} + \bar{1} + ... + \bar{1}}$. Find a term for $2x^2 + x + 1$. Describe (without proof) all the terms.

Solution Here is a term for $2x^2 + x + 1 + (+(\times(\bar{2}, \times(x, x)), x), 1)$.

A general term is a polynomial with a positive natural number coeficient.

(b) Find a WFF which expresses that $\sqrt{2}$ exists.

Solution. $\exists x(x \times x = \bar{2})$

Problem 2. Let $\mathfrak{a} = \langle A^{\mathfrak{a}}, ... \rangle$ be a \mathcal{L} -structure and let t be a term. If $s_1, s_2 \colon V \to A^{\mathfrak{a}}$ agree on all variables (if any) in t, then $\bar{s}_1(t) = \bar{s}_2(t)$. (Hint: argue by induction on the length of t.)

Solution. For t=x a variable, $s_1(x)=s_2(x)$ by assumption, and therefore, $\bar{s}_1(x)=s_1(x)=s_2(x)=\bar{s}_2(x)$. If t=c is a constant symbol, then $\bar{s}_1(c)=c^\alpha=\bar{s}_2(c)$. If $t=f(t_1,...,t_n)$ where f is a n-placed function symbol and $t_1,...,t_n$ are terms, then by the induction hypothesis:

$$\bar{s}_1(t) = f^{\alpha}(\bar{s}_1(t_1), ..., \bar{s}_1(t_n)) = f^{\alpha}(\bar{s}_2(t_1), ..., \bar{s}_2(t_n)) = \bar{s}_2(t)$$

Definition. Suppose that \mathfrak{a} , \mathfrak{b} are structures for the first order language \mathcal{L} . Then \mathfrak{a} and \mathfrak{b} are said to be elementarily equivalent, written $\mathfrak{a} \equiv \mathfrak{b}$, if for every sentence σ ,

$$A \models \sigma \Leftrightarrow B \models \sigma.$$

Homework 7

(due March 29)

Problem 3. Let \mathcal{L} be the first order language such that the only nonlogical symbol is the 2-place predicate symbol <. Let \mathfrak{a} , \mathfrak{b} , \mathfrak{c} be the following \mathcal{L} -structures:

• $\mathfrak{a} = \langle \mathbb{N}, <^{\mathfrak{a}} \rangle$.

MATH 461

- $\mathfrak{b} = \langle \mathbb{Z}, <^{\mathfrak{b}} \rangle$.
- $\mathfrak{c} = \langle \mathbb{Q}, <^{\mathfrak{c}} \rangle$.

where $<^{\alpha}, <^{b}, <^{c}$ are the usual linear orderings of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ respectively. Prove that:

(i) $a \not\equiv b$

Solution. The sentence $\exists x \forall y (x = y \lor x < y)$ holds in a but not in b

(ii) $\mathfrak{b} \not\equiv \mathfrak{c}$. solution. Density.

March 22, 2024