Problem 1. Let \mathcal{L} be the language where the non-logical 2-places function symbols are,$+ \times$ and $\overline{1}$ is a non-logical constant symbol and there are no predicate symbols.
(a) Let $\mathfrak{a}=\left\langle\mathbb{R},+{ }^{\mathfrak{a}}, \times^{\mathfrak{a}}, \overline{1}^{\mathfrak{a}}\right\rangle$ be the \mathcal{L}-structure where $+{ }^{\mathfrak{a}}, \times^{\mathfrak{a}}, \overline{1}^{\mathfrak{a}}$ are the usual $+, \cdot, 1$ on reals. Denote by \bar{n} the term $\underbrace{\overline{1}+\overline{1}+\ldots+\overline{1}}_{n \text {-times }}$. Find a term for $2 x^{2}+x+1$. Describe (without proof) all the terms.
(b) Find a WFF which expresses that $\sqrt{2}$ exists.

Problem 2. Let $\mathfrak{a}=\left\langle A^{\mathfrak{a}}, \ldots\right\rangle$ be a \mathcal{L}-structure and let t be a term. If $s_{1}, s_{2}: V \rightarrow A^{\mathfrak{a}}$ agree on all variables (if any) in t, then $\bar{s}_{1}(t)=\bar{s}_{2}(t)$. (Hint: argue by induction on the length of t.)

Definition. Suppose that $\mathfrak{a}, \mathfrak{b}$ are structures for the first order language \mathcal{L}. Then \mathfrak{a} and \mathfrak{b} are said to be elementarily equivalent, written $\mathfrak{a} \equiv \mathfrak{b}$, if for every sentence σ,

$$
A \models \sigma \Leftrightarrow B \models \sigma .
$$

Problem 3. Let \mathcal{L} be the first order language such that the only nonlogical symbol is the 2-place predicate symbol $<$. Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be the following \mathcal{L} structures:

- $\mathfrak{a}=\left\langle\mathbb{N},\left\langle^{\mathfrak{a}}\right\rangle\right.$.
- $\mathfrak{b}=\left\langle\mathbb{Z},<^{\mathfrak{b}}\right\rangle$.
- $\mathfrak{c}=\left\langle\mathbb{Q},<^{i}\right\rangle$.
where $<^{\mathfrak{a}},<^{\mathfrak{b}},<^{\mathfrak{c}}$ are the usual linear orderings of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ respectively. Prove that:

Homework 7

MATH 461
(due March 29)
March 22, 2024
(i) $\mathfrak{a} \neq \mathfrak{b}$
(ii) $\mathfrak{b} \not \equiv \mathfrak{c}$.

