Problem 1. Let \mathcal{L} be the language where the non-logical 2-places function symbols are $+, \times$ and $\overline{1}$ is a non-logical constant symbol and there are no predicate symbols.

- (a) Let $\mathfrak{a} = \langle \mathbb{R}, +\mathfrak{a}, \times\mathfrak{a}, \overline{1}\mathfrak{a} \rangle$ be the \mathcal{L} -structure where $+\mathfrak{a}, \times\mathfrak{a}, \overline{1}\mathfrak{a}$ are the usual $+, \cdot, 1$ on reals. Denote by \overline{n} the term $\underbrace{\overline{1} + \overline{1} + \ldots + \overline{1}}_{n-\text{times}}$. Find a term for $2x^2 + x + 1$. Describe (without proof) all the terms.
- (b) Find a WFF which expresses that $\sqrt{2}$ exists.

Problem 2. Let $\mathfrak{a} = \langle A^{\mathfrak{a}}, ... \rangle$ be a \mathcal{L} -structure and let t be a term. If $s_1, s_2: V \to A^{\mathfrak{a}}$ agree on all variables (if any) in t, then $\bar{s}_1(t) = \bar{s}_2(t)$. (Hint: argue by induction on the length of t.)

Definition. Suppose that \mathfrak{a} , \mathfrak{b} are structures for the first order language \mathcal{L} . Then \mathfrak{a} and \mathfrak{b} are said to be elementarily equivalent, written $\mathfrak{a} \equiv \mathfrak{b}$, if for every sentence σ ,

$$A \models \sigma \Leftrightarrow B \models \sigma.$$

Problem 3. Let \mathcal{L} be the first order language such that the only nonlogical symbol is the 2-place predicate symbol <. Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ be the following \mathcal{L} -structures:

- $\mathfrak{a} = \langle \mathbb{N}, <^{\mathfrak{a}} \rangle.$
- $\mathfrak{b} = \langle \mathbb{Z}, <^{\mathfrak{b}} \rangle.$
- $\mathfrak{c} = \langle \mathbb{Q}, <^{\mathfrak{c}} \rangle.$

where $<^{\alpha}, <^{b}, <^{c}$ are the usual linear orderings of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ respectively. Prove that:

1

MATH 461Homework 7
(due March 29)March 22, 2024

(i) $\mathfrak{a} \not\equiv \mathfrak{b}$

(ii) $\mathfrak{b} \not\equiv \mathfrak{c}$.