Homework 8

Problem 1. Let C be an axiomatizable class of structures for the first-order language \mathcal{L} and let $\mathfrak{a}, \mathfrak{b}$, be any structures for the language \mathcal{L}. Prove that if $\mathfrak{a} \equiv \mathfrak{b}$, then $\mathfrak{a} \in \mathcal{C}$ if and only if $\mathfrak{b} \in \mathcal{C}$

Solution. Let T be a theory such that $C=\operatorname{Mod}(T)$. Let $\mathfrak{a}, \mathfrak{b}$ be \mathcal{L} structure such that $\mathfrak{a} \equiv \mathfrak{b}$. Then $\mathfrak{a} \in \mathcal{C}$ iff (by definition of $\operatorname{Mod}(T)) \mathfrak{a} \mid=T$ iff (by definition of $\bmod T$) for all $\sigma \in T \mathfrak{a} \vDash \sigma$ iff (by elementary equivalence) for all $\sigma \in T \mathfrak{b} \vDash \sigma$ iff $\mathfrak{b} \vDash T$ iff $\mathfrak{b} \in \mathcal{C}$, as wanted.

Problem 2. Let \mathcal{L} be a first-order language and let C be any class of \mathcal{L} structures. Show that C is finitely axiomatizable if and only if C is axiomatizable by a single formula.

Solution. If it is axiomatizable by a single sentence, then it is finitely axiomatizable. If C is finitely axiomatizable by $\left\{\sigma_{1}, . ., \sigma_{n}\right\}$, consider the sentence $\sigma=\sigma_{1} \wedge \ldots \wedge \sigma_{n}$. Then for every \mathcal{L}-structure \mathfrak{a}, by definition of \wedge, $\mathfrak{a} \mid=\sigma$ iff for every $1 \leq i \leq n, \mathfrak{a} \mid=\sigma_{i}$ iff $\mathfrak{a}=\left\{\sigma_{1}, \ldots \sigma_{n}\right\}$ iff $\mathfrak{a} \in C$. Hence $\{\sigma\}$ is an axiomatization of C.

Problem 3. Let \mathcal{L} be a first-order language and let \mathcal{C} be an axiomatizable class of \mathcal{L}-structures. Suppose that $C^{\prime} \subseteq C$ is finitely axiomatizable, and prove that $\mathcal{C} \backslash C^{\prime}$ is axiomatizable.

Solution Let T be an axiomatization for C and suppose that $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is a finite axiomatization for $C^{\prime} \subseteq C$. Let $\phi=\neg \sigma_{1} \vee \neg \sigma_{2} \vee \ldots \vee \neg \sigma_{n}$ and consider $T^{\prime}=T \cup\{\phi\}$. It is not hard to check that T^{\prime} is an axiomatization of $C \backslash C^{\prime}$.

Problem 4. Let F be a field. Consider the language of F-vector spaces $\mathcal{L}_{V S}^{F}=\left\{c_{0},+\right\} \cup\left\{f_{r} \mid r \in F\right\}$. Where c_{0} (intended to be the 0 -vector) is a

Homework 8

MATH 461
constant symbol, + is a 2-placed function symbol (intended to be vector addition) and f_{r} is a 1-places function symbol (intended to be the scalar multiplication of a vector by r).
(1) Explain (Namely, describe the interpretation of each non-logical symbol of the language) how the usual n-real-tuples vector space (i.e. \mathbb{R}^{n}) is an $\mathcal{L}_{V S}^{\mathbb{R}}$-structure.

Solution. The universe of \mathfrak{a} is $\mathbb{R}^{n}, c_{0}^{\mathfrak{a}}=\overrightarrow{0}$ is the 0 -vector. $+{ }^{\mathfrak{a}}$ is usual n -tuples addition (i.e. coordinatewise) and $f_{r}^{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $f_{r}^{\mathfrak{a}}(\vec{v})=r \cdot \vec{v}$, where \cdot is the usual scalar multipliction.
(2) Explain how the usual set of finite degree polynomials with real coefficients (i.e. $\mathbb{R}[X]$) is an $\mathcal{L}_{V S}^{\mathbb{R}}$-structure.

Solution. Similar to the previous ite.
(3) Prove that the class C of real-valued vector spaces is axiomatizable.
[For your convenience: vector spaces-axioms]
Solution. The axioms described in the reference is an axiomatization of vector spaces.
(4) Let F be a finite field. Prove that the class of infinite dimensional vector spaces over F is axiomatizable.
[Recall: An infinite dimensional vector space is a vector space with no finite base. Equivalently, if for every $n \in \mathbb{N}$ there is a linearly independent set containing n-many vectors.]
[Hint: Formulate the statement Θ_{n} which states that there are n-many linearly independent vectors.]

Homework 8

MATH 461

Solution. Let

$$
\Theta_{n}=\exists x_{1} \exists x_{2} \ldots \exists x_{n} \wedge{ }_{\left\langle a_{1}, \ldots, a_{n}\right\rangle \in F^{n} \backslash\{0\}} f_{a_{1}}\left(x_{1}\right)+\ldots+f_{a_{n}}\left(x_{n}\right) \neq 0 .
$$

Note that Θ_{n} is indeed a (finite) WFF since F is a finite set. Then by the hint $\left\{\Theta_{n} \mid n \in \mathbb{N}\right\}$ together with the axiomatization of F-vector space is an axiomatization of infinite dimensional F-vector spaces.
(5) Prove that the class of finite dimensional vector spaces over F is not axiomatizable and deduce that the class of infinite dimensional vector spaces is not finitely axiomatizable.

Solution. Suppose toward contradiction that the class of finite dimentional F-vector spaces is axiomatizable by T, Then $T \cup\left\{\Theta_{n} \mid n<\omega\right\}$ is finitely satisfiable (the models F^{n} witness that). By the compactness theorem, $T \cup\left\{\Theta_{n} \mid n<\omega\right\}$ has a model V, then V is supposed to have finite dimension (as it satisfies T) but also it satisfies Θ_{n} for all n so it had infinite dimension, contradiction. We conclude by the previous problem that the infinite dimensional vector spaces are not finitely axiomatizable.

