Problem 1. Let *C* be an axiomatizable class of structures for the first-order language \mathcal{L} and let \mathfrak{a} , \mathfrak{b} , be any structures for the language \mathcal{L} . Prove that if $\mathfrak{a} \equiv \mathfrak{b}$, then $\mathfrak{a} \in C$ if and only if $\mathfrak{b} \in C$

Solution. Let *T* be a theory such that C = Mod(T). Let $\mathfrak{a}, \mathfrak{b}$ be \mathcal{L} structure such that $\mathfrak{a} \equiv \mathfrak{b}$. Then $\mathfrak{a} \in C$ iff (by definition of Mod(T)) $\mathfrak{a} \models T$ iff
(by definition of mod *T*) for all $\sigma \in T \mathfrak{a} \models \sigma$ iff (by elementary equivalence)
for all $\sigma \in T \mathfrak{b} \models \sigma$ iff $\mathfrak{b} \models T$ iff $\mathfrak{b} \in C$, as wanted.

Problem 2. Let \mathcal{L} be a first-order language and let C be any class of \mathcal{L} -structures. Show that C is finitely axiomatizable if and only if C is axiomatizable by a single formula.

Solution. If it is axiomatizable by a single sentence, then it is finitely axiomatizable. If *C* is finitely axiomatizable by $\{\sigma_1, ..., \sigma_n\}$, consider the sentence $\sigma = \sigma_1 \land ... \land \sigma_n$. Then for every \mathcal{L} -structure \mathfrak{a} , by definition of \land , $\mathfrak{a} \models \sigma$ iff for every $1 \le i \le n$, $\mathfrak{a} \models \sigma_i$ iff $\mathfrak{a} \models \{\sigma_1, ..., \sigma_n\}$ iff $\mathfrak{a} \in C$. Hence $\{\sigma\}$ is an axiomatization of *C*.

Problem 3. Let \mathcal{L} be a first-order language and let C be an axiomatizable class of \mathcal{L} -structures. Suppose that $C' \subseteq C$ is finitely axiomatizable, and prove that $C \setminus C'$ is axiomatizable.

Solution Let *T* be an axiomatization for *C* and suppose that $\{\sigma_1, ..., \sigma_n\}$ is a finite axiomatization for $C' \subseteq C$. Let $\phi = \neg \sigma_1 \lor \neg \sigma_2 \lor ... \lor \neg \sigma_n$ and consider $T' = T \cup \{\phi\}$. It is not hard to check that *T'* is an axiomatization of $C \setminus C'$.

Problem 4. Let *F* be a field. Consider the language of *F*-vector spaces $\mathcal{L}_{VS}^F = \{c_0, +\} \cup \{f_r \mid r \in F\}$. Where c_0 (intended to be the 0-vector) is a

constant symbol, + is a 2-placed function symbol (intended to be vector addition) and f_r is a 1-places function symbol (intended to be the scalar multiplication of a vector by r).

Explain (Namely, describe the interpretation of each non-logical symbol of the language) how the usual *n*-real-tuples vector space (i.e. Rⁿ) is an L^R_{VS}-structure.

Solution. The universe of \mathfrak{a} is \mathbb{R}^n , $c_0^{\mathfrak{a}} = \vec{0}$ is the 0-vector. $+^{\mathfrak{a}}$ is usual n-tuples addition (i.e. coordinatewise) and $f_r^{\mathfrak{a}} : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $f_r^{\mathfrak{a}}(\vec{v}) = r \cdot \vec{v}$, where \cdot is the usual scalar multiplication.

(2) Explain how the usual set of finite degree polynomials with real coefficients (i.e. ℝ[X]) is an L^ℝ_{VS}-structure.

Solution. Similar to the previous ite.

(3) Prove that the class C of real-valued vector spaces is axiomatizable.

[For your convenience: vector spaces-axioms]

Solution. The axioms described in the reference is an axiomatization of vector spaces.

(4) Let *F* be a <u>finite</u> field. Prove that the class of infinite dimensional vector spaces over *F* is axiomatizable.

[Recall: An infinite dimensional vector space is a vector space with no finite base. Equivalently, if for every $n \in \mathbb{N}$ there is a linearly independent set containing *n*-many vectors.]

[Hint: Formulate the statement Θ_n which states that there are *n*-many linearly independent vectors.]

Solution. Let

$$\Theta_n = \exists x_1 \exists x_2 \dots \exists x_n \wedge_{\langle a_1, \dots, a_n \rangle \in F^n \setminus \{\vec{0}\}} f_{a_1}(x_1) + \dots + f_{a_n}(x_n) \neq 0.$$

Note that Θ_n is indeed a (finite) WFF since *F* is a finite set. Then by the hint $\{\Theta_n \mid n \in \mathbb{N}\}$ together with the axiomatization of *F*-vector space is an axiomatization of infinite dimensional *F*-vector spaces.

(5) Prove that the class of finite dimensional vector spaces over *F* is not axiomatizable and deduce that the class of infinite dimensional vector spaces is not finitely axiomatizable.

Solution. Suppose toward contradiction that the class of finite dimentional *F*-vector spaces is axiomatizable by *T*, Then $T \cup \{\Theta_n \mid n < \omega\}$ is finitely satisfiable (the models F^n witness that). By the compactness theorem, $T \cup \{\Theta_n \mid n < \omega\}$ has a model *V*, then *V* is supposed to have finite dimension (as it satisfies *T*) but also it satisfies Θ_n for all *n* so it had infinite dimension, contradiction. We conclude by the previous problem that the infinite dimensional vector spaces are not finitely axiomatizable.