Problem 1. Let *C* be an axiomatizable class of structures for the first-order language \mathcal{L} and let \mathfrak{a} , \mathfrak{b} , be any structures for the language \mathcal{L} . Prove that if $\mathfrak{a} \equiv \mathfrak{b}$, then $\mathfrak{a} \in C$ if and only if $\mathfrak{b} \in C$

Problem 2. Let \mathcal{L} be a first-order language and let C be any class of \mathcal{L} -structures. Show that C is finitely axiomatizable if and only if C is axiomatizable by a single formula.

Problem 3. Let \mathcal{L} be a first-order language and let C be an axiomatizable class of \mathcal{L} -structures. Suppose that $C' \subseteq C$ is finitely axiomatizable, and prove that $C \setminus C'$ is axiomatizable.

Problem 4. Let *F* be a field. Consider the language of *F*-vector spaces $\mathcal{L}_{VS}^F = \{c_0, +\} \cup \{f_r \mid r \in F\}$. Where c_0 (intended to be the 0-vector) is a constant symbol, + is a 2-placed function symbol (intended to be vector addition) and f_r is a 1-places function symbol (intended to be the scalar multiplication of a vector by *r*).

- Explain (Namely, describe the interpretation of each non-logical symbol of the language) how the usual *n*-real-tuples vector space (i.e. Rⁿ) is an L^R_{VS}-structure.
- (2) Explain how the usual set of finite degree polynomials with real coefficients (i.e. ℝ[X]) is an L^ℝ_{VS}-structure.
- (3) Prove that the class *C* of real-valued vector spaces is axiomatizable.[For your convenience: vector spaces-axioms]
- (4) Let *F* be a <u>finite</u> field. Prove that the class of infinite dimensional vector spaces over *F* is axiomatizable.

[Recall: An infinite dimensional vector space is a vector space with no finite base. Equivalently, if for every $n \in \mathbb{N}$ there is a linearly independent set containing *n*-many vectors.]

[Hint: Formulate the statement Θ_n which states that there are *n*-many linearly independent vectors.]

(5) Prove that the class of finite dimensional vector spaces over *F* is not axiomatizable and deduce that the class of infinite dimensional vector spaces is not finitely axiomatizable.