Homework 8

Problem 1. Let \mathcal{C} be an axiomatizable class of structures for the first-order language \mathcal{L} and let $\mathfrak{a}, \mathfrak{b}$, be any structures for the language \mathcal{L}. Prove that if $\mathfrak{a} \equiv \mathfrak{b}$, then $\mathfrak{a} \in C$ if and only if $\mathfrak{b} \in \mathcal{C}$

Problem 2. Let \mathcal{L} be a first-order language and let C be any class of \mathcal{L} structures. Show that C is finitely axiomatizable if and only if C is axiomatizable by a single formula.

Problem 3. Let \mathcal{L} be a first-order language and let \mathcal{C} be an axiomatizable class of \mathcal{L}-structures. Suppose that $C^{\prime} \subseteq C$ is finitely axiomatizable, and prove that $\mathcal{C} \backslash C^{\prime}$ is axiomatizable.

Problem 4. Let F be a field. Consider the language of F-vector spaces $\mathcal{L}_{V S}^{F}=\left\{c_{0},+\right\} \cup\left\{f_{r} \mid r \in F\right\}$. Where c_{0} (intended to be the 0 -vector) is a constant symbol, + is a 2 -placed function symbol (intended to be vector addition) and f_{r} is a 1-places function symbol (intended to be the scalar multiplication of a vector by r).
(1) Explain (Namely, describe the interpretation of each non-logical symbol of the language) how the usual n-real-tuples vector space (i.e. \mathbb{R}^{n}) is an $\mathcal{L}_{V S}^{\mathbb{R}}$-structure.
(2) Explain how the usual set of finite degree polynomials with real coefficients (i.e. $\mathbb{R}[X]$) is an $\mathcal{L}_{V S}^{\mathbb{R}}$-structure.
(3) Prove that the class C of real-valued vector spaces is axiomatizable.
[For your convenience: vector spaces-axioms]
(4) Let F be a finite field. Prove that the class of infinite dimensional vector spaces over F is axiomatizable.

Homework 8

MATH 461
[Recall: An infinite dimensional vector space is a vector space with no finite base. Equivalently, if for every $n \in \mathbb{N}$ there is a linearly independent set containing n-many vectors.]
[Hint: Formulate the statement Θ_{n} which states that there are n-many linearly independent vectors.]
(5) Prove that the class of finite dimensional vector spaces over F is not axiomatizable and deduce that the class of infinite dimensional vector spaces is not finitely axiomatizable.

