Homework 9

MATH 461

Problem 1. Prove that if α, β are any WFF's, then

$$
(\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \forall x \beta))
$$

is valid.

Solution. Let \mathfrak{a} be an \mathcal{L}-structure and $s: V \rightarrow A^{\mathfrak{a}}$ be an assignment to the variables. WTP

$$
\mathfrak{a} \mid=(\forall x(\alpha \rightarrow \beta) \rightarrow(\forall x \alpha \rightarrow \forall x \beta))[s]
$$

Suppose that $\mathfrak{a} \mid=(\forall x(\alpha \rightarrow \beta))[s]$ WTP $\mathfrak{a} \vDash(\forall x \alpha \rightarrow \forall x \beta)[s]$. Suppose that $\mathfrak{a} \vDash(\forall x \alpha)[s]$ WTP $\mathfrak{a} \vDash(\forall x \beta)[s]$. Let $a \in A^{\mathfrak{a}}$, WTP $\mathfrak{a} \vDash \beta[s(x \mid a)]$. Since $\mathfrak{a} \mid=(\forall x \alpha)[s]$, we have that $\mathfrak{a} \vDash \alpha[s(x \mid a)]$ and since $\mathfrak{a} \mid=(\forall x(\alpha \rightarrow \beta))[s]$ we have $\mathfrak{a}=(\alpha \rightarrow \beta)[s(x \mid a)]$ which implies that $\mathfrak{a} \mid=\beta[s(x \mid a)]$ as wanted.

Problem 2. Prove that if P is a binary predicate symbol, then

$$
(x=y \rightarrow(P(x, z) \rightarrow P(y, z)))
$$

is valid.

Solution. Let \mathfrak{a} be an \mathcal{L}-structure and $s: V \rightarrow A^{\mathfrak{a}}$ be an assignment to the variables. WTP

$$
\mathfrak{a} \vDash(x=y \rightarrow(P(x, z) \rightarrow P(y, z)))[s]
$$

Assume that $\mathfrak{a} \vDash(x=y)[s]$ WTP $\mathfrak{a} \vDash(P(x, z) \rightarrow P(y, z))[s]$. Suppose that $\mathfrak{a} \mid=(P(x, z))[s]$ WTP $\mathfrak{a} \mid=(P(y, z))[s]$. By assumption $s(x)=s(y)$ and $\langle s(x), s(z)\rangle \in P^{\mathfrak{a}}$ and since $s(x)=s(y)$ we have that $\langle s(y), s(z)\rangle \in P^{\mathfrak{a}}$. By definition this means that $\mathfrak{a}=(P(y, z))[s]$

Homework 9

MATH 461

Problem 3. Prove that if $\Gamma \vdash \alpha_{1}$ and $\Gamma \vdash \alpha_{1} \rightarrow \alpha_{2}$ then $\Gamma \vdash \alpha_{2}$

Solution. Let $\left\langle b_{1}, \ldots, b_{n}=\alpha_{1}\right\rangle$ be a deduction to α_{1} from Γ and $\left\langle c_{1}, \ldots, c_{m}=\alpha_{1} \rightarrow \alpha_{2}\right\rangle$ be a deduction to $\alpha_{1} \rightarrow \alpha_{2}$ from Γ, then $\left\langle b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{m}, \alpha_{2}\right\rangle$ is a deduction for α_{2} from Γ since α_{2} is obtained by MP from b_{n} and c_{m}.

Problem 4. Show that $\stackrel{\exists v_{1} P\left(v_{1}\right) \rightarrow \exists v_{2} P\left(v_{2}\right)}{\text { a }}$
[Small Hint: Use the generalization theorem]
(1) $\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \neg P\left(v_{1}\right)$. [Ax 2]
(2) $\forall v_{1}\left(\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \neg P\left(v_{1}\right)\right)$ [Generalization Thm.]
(3) $\forall v_{1}\left(\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \neg P\left(v_{1}\right)\right) \rightarrow\left(\forall v_{1} \forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)\right)$ [Ax 3]
(4) $\forall v_{1} \forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)[M P]$
(5) $\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \forall v_{2} \neg P\left(v_{2}\right)[A x 4,(2),(3)]$
(6) $\left(\forall v_{2} \neg P\left(v_{2}\right) \rightarrow\left(\forall v_{1} \forall v_{2} \neg P\left(v_{2}\right)\right) \rightarrow\left(\left(\forall v_{1} \forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)\right) \rightarrow\right.\right.$
$\left.\left(\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)\right)\right)[A x 1:(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))]$
(7) $\left(\forall v_{1} \forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)\right) \rightarrow\left(\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)\right)[M P,(5),(6)]$
(8) $\forall v_{2} \neg P\left(v_{2}\right) \rightarrow \forall v_{1} \neg P\left(v_{1}\right)$ [MP, (4),(7)]
(9) $\neg \forall v_{2} \neg P\left(v_{2}\right) \rightarrow \neg \forall v_{1} \neg P\left(v_{1}\right)$ [Ax1- contrapositive + MP with (8)]

