(due April 12)

Problem 1. Prove that if α , β are any WFF's, then

$$(\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta))$$

is valid.

Solution. Let \mathfrak{a} be an \mathcal{L} -structure and $s : V \to A^{\mathfrak{a}}$ be an assignment to the variables. WTP

$$\mathfrak{a} \models (\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta))[s]$$

Suppose that $\mathfrak{a} \models (\forall x(\alpha \rightarrow \beta))[s]$ WTP $\mathfrak{a} \models (\forall x\alpha \rightarrow \forall x\beta)[s]$. Suppose that $\mathfrak{a} \models (\forall x \alpha)[s]$ WTP $\mathfrak{a} \models (\forall x \beta)[s]$. Let $a \in A^{\mathfrak{a}}$, WTP $\mathfrak{a} \models \beta[s(x|a)]$. Since $\mathfrak{a} \models (\forall x \alpha)[s]$, we have that $\mathfrak{a} \models \alpha[s(x|a)]$ and since $\mathfrak{a} \models (\forall x(\alpha \rightarrow \beta))[s]$ we have $\mathfrak{a} \models (\alpha \rightarrow \beta)[s(x|a)]$ which implies that $\mathfrak{a} \models \beta[s(x|a)]$ as wanted.

Problem 2. Prove that if *P* is a binary predicate symbol, then

$$(x = y \rightarrow (P(x, z) \rightarrow P(y, z)))$$

is valid.

Solution. Let \mathfrak{a} be an \mathcal{L} -structure and $s : V \to A^{\mathfrak{a}}$ be an assignment to the variables. WTP

$$\mathfrak{a} \models (x = y \rightarrow (P(x, z) \rightarrow P(y, z)))[s]$$

Assume that $\mathfrak{a} \models (x = y)[s]$ WTP $\mathfrak{a} \models (P(x, z) \rightarrow P(y, z))[s]$. Suppose that $\mathfrak{a} \models (P(x, z))[s]$ WTP $\mathfrak{a} \models (P(y, z))[s]$. By assumption s(x) = s(y) and $\langle s(x), s(z) \rangle \in P^{\mathfrak{a}}$ and since s(x) = s(y) we have that $\langle s(y), s(z) \rangle \in P^{\mathfrak{a}}$. By definition this means that $\mathfrak{a} \models (P(y, z))[s]$

1

(due April 12)

Problem 3. Prove that if $\Gamma \vdash \alpha_1$ and $\Gamma \vdash \alpha_1 \rightarrow \alpha_2$ then $\Gamma \vdash \alpha_2$

Solution. Let $\langle b_1, ..., b_n = \alpha_1 \rangle$ be a deduction to α_1 from Γ and $\langle c_1, ..., c_m = \alpha_1 \rightarrow \alpha_2 \rangle$ be a deduction to $\alpha_1 \rightarrow \alpha_2$ from Γ , then $\langle b_1, ..., b_n, c_1, ..., c_m, \alpha_2 \rangle$ is a deduction for α_2 from Γ since α_2 is obtained by MP from b_n and c_m .

Problem 4. Show that $\vdash \exists v_1 P(v_1) \rightarrow \exists v_2 P(v_2)$

[Small Hint: Use the generalization theorem]

(1)
$$\forall v_2 \neg P(v_2) \rightarrow \neg P(v_1)$$
. [Ax 2]

(2)
$$\forall v_1(\forall v_2 \neg P(v_2) \rightarrow \neg P(v_1))$$
 [Generalization Thm.]

$$(3) \ \forall v_1(\forall v_2 \neg P(v_2) \rightarrow \neg P(v_1)) \rightarrow (\forall v_1 \forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1)) \ [Ax 3]$$

(4)
$$\forall v_1 \forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1)$$
 [MP]

(5)
$$\forall v_2 \neg P(v_2) \rightarrow \forall v_1 \forall v_2 \neg P(v_2) [Ax 4, (2), (3)]$$

(6)
$$(\forall v_2 \neg P(v_2) \rightarrow (\forall v_1 \forall v_2 \neg P(v_2)) \rightarrow ((\forall v_1 \forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1)) \rightarrow (\forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1)))$$
 [Ax1: $(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$]

$$(7) \quad (\forall v_1 \forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1)) \rightarrow (\forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1)) [\text{MP}, (5), (6)]$$

(8)
$$\forall v_2 \neg P(v_2) \rightarrow \forall v_1 \neg P(v_1) [MP, (4), (7)]$$

(9)
$$\neg \forall v_2 \neg P(v_2) \rightarrow \neg \forall v_1 \neg P(v_1)$$
 [Ax1- contrapositive + MP with (8)]