(Instructor: Tom Benhamou)

Nov 17

Instructions

The midterm duration is 1 hour and 20 min, and consists of 4 problems, each worth 26 points (The maximal grade is 100). The answers to the problems should be written in the designated areas.

Problems

Problem 1. Let us define recursively $A_0 = \emptyset$ and $A_{n+1} = P(A_n)$. Prove by induction that for every $n, A_n \subseteq A_{n+1}$

Solution: By induction. For n = 0 $A_0 = \emptyset$ is a subset of every set and therefore $A_0 \subseteq A_1$. Suppose this is true for n-1 and let us prove that $A_n \subseteq A_{n+1}$. Let $X \in A_n = P(A_{n-1})$. Then $X \subseteq A_{n-1}$. By the induction hypothesis, $A_{n-1} \subseteq A_n$ and therefore $X \subseteq A_n$. By definition $X \in P(A_n) =$ A_{n+1} . It follows that $A_n \subseteq A_{n+1}$.

MATH 361 (Instructor: Tom Benhamou) Nov 17

Problem 2. Give the definition of a linear ordering.

(a) Give the definition of an isomorphism between two linear orders $\langle L_1, \langle \rangle$ and $\langle L_2, \langle \rangle$.

Prove or disprove each of the following statements:

(i) $\langle \mathbb{Q} \setminus \mathbb{Z}, \langle \rangle \simeq \langle \mathbb{Q} \setminus \mathbb{N}, \langle \rangle$.

Solution. Use Cantor's theorem to prove they are isomorphic.

(ii)
$$\langle \mathbb{R}, \langle \rangle \simeq \langle \mathbb{R} \setminus (0, 1), \langle \rangle$$
.

Solution. Not isomorphic. Suppose otherwise, then there is an isomorphism $f : \mathbb{R} \setminus (0, 1) \to \mathbb{R}$. Consider f(1) = r and f(0) = r'. Since 0 < 1, and f is order preserving, r' < r. Let r' < r'' < r be any real, then since f is subjective, there is $q \in \mathbb{R} \setminus (0, 1)$ such that f(q) = r'', but since f(0) < f(q) < f(1), 0 < q < 1, contradiction.

Solution:

MATH 361 (Instructor: Tom Benhamou) Nov 17

Problem 3. Fix a natural number N > 0. A function $f : \mathbb{N} \to \{0, 1\}$ is called *N*-periodic if for every $n \in \mathbb{N}$, f(n + N) = f(n). For any N > 0, let A_N be the set of all *N*-periodic functions. Show that

$$A_N \approx \{0, 1\}^N = \{0, 1\} \times \{0, 1\} \times \dots \times \{0, 1\}$$

[Instructions: Half of the points are given for a correct definition of a bijection, the other half is the proof that the defined function is indeed a bijection.]

Solution

The function $F : A_N \to \{0,1\}^N$ defined by $F(f) = \langle f(0), ..., f(N-1) \rangle$ is one-to-one and onto. to see this, let $f_1, f_2 \in A_N$ and suppose that $F(f_1) = F(f_2)$. Then for every $0 \le i < N$, $f_1(i) = f_2(i)$. For $n \ge N$, since f_1, f_2 are *N*-periodic, $f_1(n) = f_1(n \mod N) = f_2(n \mod N) = f_2(n)$. To see that *F* is onto, let $\langle a_0, ..., a_{N-1} \rangle \in \{0, 1\}^N$. Define $f \in A_N$ by $f(n) = a_n \mod N$. Then *f* is *N*-periodic and $F(f) = \langle a_0, ..., a_{N-1} \rangle$. Hence *F* is onto. MATH 361 (Instructor: Tom Benhamou) Nov 17

Problem 4. A function f is called periodic if there is $N \in \mathbb{N}_+$ such that f is N-periodic. Show that the set A of all N-periodic functions is infinitely countable. [Remark: You can use Problem 3 even if you did not prove it.]

Solution First we note that the function $F : \mathbb{N}_+ \to A$ defined by $F(N)(m) = \begin{cases} 1 & n \mod N = 0 \\ 0 & 0.w. \end{cases}$ (namely, F(N) is the indicator function. To see this, we claim that F(N) is *N*-periodic. Indeed, for every n, F(n) = 1 is and only if n is divisible by N if and only if n + N is divisible by N if and only if r + N is divisible by N if and only if F(N)(n + N) = 1. Also, it is one-to-one since if $n \neq m$ then without loss of generality, n < m and therefore F(n)(n) = 1 while f(m)(n) = 0. So $F(n) \neq F(m)$. We conclude that $\mathbb{N} \approx \mathbb{N}_+ \leq A$. For the other direction, $A = \bigcup_{N \in \mathbb{N}_+} A_N$, and by the previous problem each A_N is a finite set and in particular countable. We conclude that A is a countable union of countable sets hence countable. By CSB A is infinitely countable.