MidTerm example- Mathematical Logic-Sols

MATH361 (Instructor: Tom Benhamou) Nov 17

Instructions

The midterm duration is 1 hour and 20 min , and consists of 4 problems, each worth 26 points (The maximal grade is 100). The answers to the problems should be written in the designated areas.

Problems

Problem 1. Let us define recursively $A_{0}=\emptyset$ and $A_{n+1}=P\left(A_{n}\right)$. Prove by induction that for every $n, A_{n} \subseteq A_{n+1}$

Solution: By induction. For $n=0 A_{0}=\emptyset$ is a subset of every set and therefore $A_{0} \subseteq A_{1}$. Suppose this is true for $n-1$ and let us prove that $A_{n} \subseteq A_{n+1}$. Let $X \in A_{n}=P\left(A_{n-1}\right)$. Then $X \subseteq A_{n-1}$. By the induction hypothesis, $A_{n-1} \subseteq A_{n}$ and therefore $X \subseteq A_{n}$. By definition $X \in P\left(A_{n}\right)=$ A_{n+1}. It follows that $A_{n} \subseteq A_{n+1}$.

MidTerm example- Mathematical Logic-Sols
 MATH 361
 (Instructor: Tom Benhamou)
 Nov 17

Problem 2. Give the definition of a linear ordering.
(a) Give the definition of an isomorphism between two linear orders $\left\langle L_{1},<\right.$ \rangle and $\left\langle L_{2},<\right\rangle$.

Prove or disprove each of the following statements:
(i) $\langle\mathbb{Q} \backslash \mathbb{Z},<\rangle \simeq\langle\mathbb{Q} \backslash \mathbb{N},<\rangle$.

Solution. Use Cantor's theorem to prove they are isomorphic.
(ii) $\langle\mathbb{R},<\rangle \simeq\langle\mathbb{R} \backslash(0,1),<\rangle$.

Solution. Not isomorphic. Suppose otherwise, then there is an isomorphism $f: \mathbb{R} \backslash(0,1) \rightarrow \mathbb{R}$. Consider $f(1)=r$ and $f(0)=r^{\prime}$. Since $0<1$, and f is order preserving, $r^{\prime}<r$. Let $r^{\prime}<r^{\prime \prime}<r$ be any real, then since f is subjective, there is $q \in \mathbb{R} \backslash(0,1)$ such that $f(q)=r^{\prime \prime}$, but since $f(0)<f(q)<f(1), 0<q<1$, contradiction.

Solution:

MidTerm example- Mathematical Logic-Sols

Problem 3. Fix a natural number $N>0$. A function $f: \mathbb{N} \rightarrow\{0,1\}$ is called N-periodic if for every $n \in \mathbb{N}, f(n+N)=f(n)$. For any $N>0$, let A_{N} be the set of all N-periodic functions. Show that

$$
A_{N} \approx\{0,1\}^{N}=\{0,1\} \times\{0,1\} \times \ldots \times\{0,1\}
$$

[Instructions: Half of the points are given for a correct definition of a bijection, the other half is the proof that the defined function is indeed a bijection.]

Solution

The function $F: A_{N} \rightarrow\{0,1\}^{N}$ defined by $F(f)=\langle f(0), \ldots, f(N-1)\rangle$ is one-to-one and onto. to see this, let $f_{1}, f_{2} \in A_{N}$ and suppose that $F\left(f_{1}\right)=F\left(f_{2}\right)$. Then for every $0 \leq i<N, f_{1}(i)=f_{2}(i)$. For $n \geq N$, since f_{1}, f_{2} are N-periodic, $f_{1}(n)=f_{1}(n \bmod N)=f_{2}(n \bmod N)=f_{2}(n)$. To see that F is onto, let $\left\langle a_{0}, \ldots, a_{N-1}\right\rangle \in\{0,1\}^{N}$. Define $f \in A_{N}$ by $f(n)=a_{n} \bmod N$. Then f is N-periodic and $F(f)=\left\langle a_{0}, . ., a_{N-1}\right\rangle$. Hence F is onto.

MidTerm example- Mathematical Logic-Sols

MATH 361
(Instructor: Tom Benhamou)
Nov 17

Problem 4. A function f is called periodic if there is $N \in \mathbb{N}_{+}$such that f is N-periodic. Show that the set A of all N-periodic functions is infinitely countable. [Remark: You can use Problem 3 even if you did not prove it.]

Solution First we note that the function $F: \mathbb{N}_{+} \rightarrow A$ defined by $F(N)(m)=\left\{\begin{array}{ll}1 & n \bmod N=0 \\ 0 & \text { o.w. }\end{array} . \quad\right.$ (namely, $F(N)$ is the indicator function for the set of n which are divisible by N) is a well-defined function. To see this, we claim that $F(N)$ is N-periodic. Indeed, for every $n, F(n)=1$ is and only if n is divisible by N if and only if $n+N$ is divisible by N if and only if $F(N)(n+N)=1$. Also, it is one-to-one since if $n \neq m$ then without loss of generality, $n<m$ and therefore $F(n)(n)=1$ while $f(m)(n)=0$. So $F(n) \neq F(m)$. We conclude that $\mathbb{N} \approx \mathbb{N}_{+} \leq A$. For the other direction, $A=\bigcup_{N \in \mathbb{N}_{+}} A_{N}$, and by the previous problem each A_{N} is a finite set and in particular countable. We conclude that A is a countable union of countable sets hence countable. By CSB A is infinitely countable.

