MidTerm II- Set Theory fall 2023
 MATH 361
 (Instructor: Tom Benhamou)
 Nov 17

Instructions

The midterm duration is 1 hour and 20 min , and consists of 4 problems, each worth 26 points (The maximal grade is 100). The answers to the problems should be written in the designated areas.

Problems

Problem 1. Let us define recursively $A_{0}=\emptyset$ and $A_{n+1}=P\left(A_{n}\right)$. Prove by induction that for every $n, A_{n} \subseteq A_{n+1}$

Solution:

MidTerm II- Set Theory fall 2023

MATH 361
(Instructor: Tom Benhamou)
Nov 17

Problem 2. Give the definition of a linear ordering.
(a) Give the definition of an isomorphism between two linear orders $\left\langle L_{1},<\right.$ \rangle and $\left\langle L_{2},<\right\rangle$.

Prove or disprove each of the following statements:
(i) $\langle\mathbb{Q} \backslash \mathbb{Z},<\rangle \simeq\langle\mathbb{Q} \backslash \mathbb{N},<\rangle$.
(ii) $\langle\mathbb{R},<\rangle \simeq\langle\mathbb{R} \backslash(0,1),<\rangle$.

Solution:

MidTerm II- Set Theory fall 2023

MATH 361

Problem 3. Fix a natural number $N>0$. A function $f: \mathbb{N} \rightarrow\{0,1\}$ is called N-periodic if for every $n \in \mathbb{N}, f(n+N)=f(n)$. For any $N>0$, let A_{N} be the set of all N-periodic functions. Show that

$$
A_{N} \approx\{0,1\}^{N}=\{0,1\} \times\{0,1\} \times \ldots \times\{0,1\}
$$

[Instructions: Half of the points are given for a correct definition of a bijection, the other half is the proof that the defined function is indeed a bijection.]

Solution

MidTerm II- Set Theory fall 2023
MATH 361
(Instructor: Tom Benhamou)
Nov 17

Problem 4. A function f is called periodic if there is $N \in \mathbb{N}_{+}$such that f is N-periodic. Show that the set A of all N-periodic functions is infinitely countable. [Remark: You can use Problem 3 even if you did not prove it.]

Solution

