MidTerm I- Mathematical Logic-Solutions
 MATH 461
 (Instructor: Tom Benhamou)
 Feb 26

Problems

Problem 1. Prove that $\left\langle\mathbb{N} \times \mathbb{N},\left\langle_{L E X}\right\rangle \not \approx\langle\mathbb{Z},<\rangle\right.$. (28 pt.)
[Recall: $<_{L E X}$ denotes the lexicographic order on $\mathbb{N} \times \mathbb{N}$ and $<$ is the regular order on the integers.]

Solution. Suppose towards a contradiction that the two orders are isomorphic and let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}$ be an isomorphism. Consider $f(\langle 0,0\rangle)=$ $z \in \mathbb{Z}$, then $z-1 \in \mathbb{Z}$ and since f is an isomorphism, there is $\langle n, m \in \mathbb{N} \times \mathbb{N}$ such that $f(\langle n, m\rangle)=z-1$. since f is order preserving, $\langle n, m\rangle<_{L E X}\langle 0,0\rangle$. By definition of $<_{L E X}$, either $n<0$ or $n=0 \wedge m<0$ in either case we obtain a contradiction, as both n, m are natural numbers.

Problem 2. On $P(\mathbb{N})$, consider the relation

$$
E=\left\{\langle A, B\rangle \in P(\mathbb{N})^{2} \mid(A \Delta B) \cap\{2023,2024\}=\emptyset\right\}
$$

[Recall: the symmetric difference is defined by $A \Delta B=(A \backslash B) \cup(B \backslash A)$.]
(a) Prove that E is an equivalence relation on $P(\mathbb{N})$. (15 pt.)
(b) How many elements are there in the set $P(\mathbb{N}) / E$? Provide a system of representatives for E. No proof required. (20 pt .)
[Instructions: your answer should look like " $P(\mathbb{N}) / E$ has ... elements, and a system, of representatives is given by"]

Solution. (a) The relation is reflective since for every $A \in P(\mathbb{N}), A \Delta A=$ \emptyset, and therefore $A \Delta A \cap\{2023,2024\}=\emptyset$. Hence $\langle A, A\rangle \in E$. The relation is symmetric, since if $\langle A, B\rangle \in E$, then $A \Delta B \cap\{2023,2024\}=\emptyset$. Now

MidTerm I- Mathematical Logic-Solutions
MATH 461
(Instructor: Tom Benhamou)
Feb 26

$B \Delta A=A \Delta B$ and therefore $B \Delta A \cap\{2023,2024\}=\emptyset$. Hence $\langle B, A\rangle \in E$. Finally to see that E is transitive, suppose that $\langle A, B\rangle,\langle B, C\rangle \in E$, then $A \Delta B \cap\{2023,2024\}=\emptyset$ and $B \Delta C \cap\{2023,2024\}=\emptyset$. Note that $A \Delta C \subseteq$ $A \Delta B \cup B \Delta C$ (prove that!) and therefore

$$
\begin{aligned}
& A \Delta C \cap\{2023,2024\} \subseteq(A \Delta B \cup B \Delta C) \cap\{2023,2024\}= \\
= & A \Delta B \cap\{2023,2024\} \cup B \Delta C \cap\{2023,2024\}=\emptyset \cup \emptyset=\emptyset .
\end{aligned}
$$

(b) $P(\mathbb{N}) / E$ has 4 elements. A system of representatives if given by $P(\{2023,2024\})$.

Problem 3. (a) Formulate Cantor-Berstein Theorem. No proof required. (3 pt.)
(b) A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called double-valued if for every $n \in \mathbb{N}$, $|\{m \in \mathbb{N} \mid f(m)=n\}|=2$. Give an example of a double-valued function. No proof required. (10 pt.)
[Instructions: your solution should look like "Here is my example: define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=\ldots$...]
(c) Compute the cardinality of the set of all double-valued functions f : $\mathbb{N} \rightarrow \mathbb{N}$. Prove your answer. (30 pt.)

Solution.

(a) clear.
(b) Here is my example: define $f: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f(n)= \begin{cases}\frac{n}{2} & n \in \mathbb{N}_{\text {even }} \\ \frac{n-1}{2} & n \in \mathbb{N}_{\text {odd }}\end{cases}
$$

MidTerm I- Mathematical Logic-Solutions

(c) Let A denote the set of all double-valued functions. Let us prove that the cardinality of A is $2^{\aleph_{0}}$ using Cantor-Bernstein. To see this, first note that $A \subseteq \mathbb{N}^{\mathbb{N}}$ and therefore $|A| \leq\left|{ }^{\mathbb{N}} \mathbb{N}\right|$. We saw in class that $\left|{ }^{\mathbb{N}} \mathbb{N}\right|=2^{\aleph_{0}}$. Now for the other direction, let us define a function $F:{ }^{\mathbb{N}}\{0,1\} \rightarrow A$.

The idea is to code each value $f(n)$ by changing which elements are mapped to $2 n$ and which are mapped to $2 n+1$.

For each $f: \mathbb{N} \rightarrow\{0,1\}$, we define $F(f)(4 n)=F(f)(4 n+1)=2 n$ and $F(f)(4 n+2)=F(f)(4 n+3)=2 n+1$ if $f(n)=0$ and $F(f)(4 n)=F(f)(4 n+3)=$ $2 n+1$ and $F(f)(4 n+1)=F(f)(4 n+2)=2 n$ if $f(n)=1$. A formula which does it is as follows:

$$
F(f)(m)= \begin{cases}\frac{m-1}{2} & m \in \mathbb{N}_{\text {odd }} \\ \frac{m+1-(-1)^{f\left(\frac{m}{4}\right)}}{2} & 4 \mid m \\ \frac{m-1+(-1)^{f\left(\frac{m-2}{4}\right)}}{2} & \text { otherwise }\end{cases}
$$

It follows that for every n, there are precisely two m 's (by splitting into case whether n is even or odd and if $f\left(\frac{n}{2}\right)$ is 0 or 1) such that $F(f)(m)=n$, and therefore $F(f)$ is double-valued. Also, if $f \neq g$ then for some n, $f(n) \neq g(n)$. WLOG $f(n)=0$ and $g(n)=1$. Then $F(f)(4 n)=2 n$ and $F(g)(4 n)=2 n+1$, hence $F(f)(4 n) \neq F(g)(4 n)$ and therefore $F(f) \neq F(g)$. It follows that F is injective. It follows that $\left.\right|^{\mathbb{N}}\{0,1\}|\leq|A|$. By CantorBernstein, we conclude that $|A|=2^{\aleph_{0}}$.

