MATH 461

(Instructor: Tom Benhamou)

Problems

Problem 1. Prove that $\langle \mathbb{N} \times \mathbb{N}, \langle z_{EX} \rangle \neq \langle \mathbb{Z}, \langle \rangle$. (28 pt.)

[Recall: $<_{LEX}$ denotes the lexicographic order on $\mathbb{N} \times \mathbb{N}$ and < is the regular order on the integers.]

Solution. Suppose towards a contradiction that the two orders are isomorphic and let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ be an isomorphism. Consider $f(\langle 0, 0 \rangle) = z \in \mathbb{Z}$, then $z - 1 \in \mathbb{Z}$ and since f is an isomorphism, there is $\langle n, m \in \mathbb{N} \times \mathbb{N}$ such that $f(\langle n, m \rangle) = z - 1$. since f is order preserving, $\langle n, m \rangle <_{LEX} \langle 0, 0 \rangle$. By definition of $<_{LEX}$, either n < 0 or $n = 0 \wedge m < 0$ in either case we obtain a contradiction, as both n, m are natural numbers.

Problem 2. On $P(\mathbb{N})$, consider the relation

$$E = \left\{ \langle A, B \rangle \in P(\mathbb{N})^2 \mid (A \Delta B) \cap \{2023, 2024\} = \emptyset \right\}.$$

[Recall: the symmetric difference is defined by $A \Delta B = (A \setminus B) \cup (B \setminus A)$.]

- (a) Prove that *E* is an equivalence relation on $P(\mathbb{N})$. (15 pt.)
- (b) How many elements are there in the set P(N)/E? Provide a system of representatives for *E*. No proof required. (20 pt.)
 [Instructions: your answer should look like "P(N)/E has ... elements,

and a system, of representatives is given by"]

Solution. (a) The relation is reflective since for every $A \in P(\mathbb{N})$, $A\Delta A = \emptyset$, and therefore $A\Delta A \cap \{2023, 2024\} = \emptyset$. Hence $\langle A, A \rangle \in E$. The relation is symmetric, since if $\langle A, B \rangle \in E$, then $A\Delta B \cap \{2023, 2024\} = \emptyset$. Now

MATH 461	(Instructor: Tom Benhamou)	Feb 26

 $B\Delta A = A\Delta B$ and therefore $B\Delta A \cap \{2023, 2024\} = \emptyset$. Hence $\langle B, A \rangle \in E$. Finally to see that *E* is transitive, suppose that $\langle A, B \rangle, \langle B, C \rangle \in E$, then $A\Delta B \cap \{2023, 2024\} = \emptyset$ and $B\Delta C \cap \{2023, 2024\} = \emptyset$. Note that $A\Delta C \subseteq A\Delta B \cup B\Delta C$ (prove that!) and therefore

 $A \Delta C \cap \{2023, 2024\} \subseteq (A \Delta B \cup B \Delta C) \cap \{2023, 2024\} =$

 $= A \Delta B \cap \{2023, 2024\} \cup B \Delta C \cap \{2023, 2024\} = \emptyset \cup \emptyset = \emptyset.$

(b) $P(\mathbb{N})/E$ has 4 elements. A system of representatives if given by $P(\{2023, 2024\})$.

- **Problem 3.** (a) Formulate Cantor-Berstein Theorem. No proof required. (3 pt.)
- (b) A function f : N → N is called *double-valued* if for every n ∈ N, |{m ∈ N | f(m) = n}| = 2. Give an example of a double-valued function. No proof required. (10 pt.)

[Instructions: your solution should look like "Here is my example: define $f : \mathbb{N} \to \mathbb{N}$ by $f(n) = \dots$ ".]

(c) Compute the cardinality of the set of all double-valued functions f: $\mathbb{N} \to \mathbb{N}$. Prove your answer. (30 pt.)

Solution.

(a) clear.

(b) Here is my example: define $f : \mathbb{N} \to \mathbb{N}$ by

$$f(n) = \begin{cases} \frac{n}{2} & n \in \mathbb{N}_{even} \\ \frac{n-1}{2} & n \in \mathbb{N}_{odd} \end{cases}$$

MATH 461 (Instructor: Tom Benhamou) Feb 26

(c) Let *A* denote the set of all double-valued functions. Let us prove that the cardinality of *A* is 2^{\aleph_0} using Cantor-Bernstein. To see this, first note that $A \subseteq {}^{\mathbb{N}}\mathbb{N}$ and therefore $|A| \leq |{}^{\mathbb{N}}\mathbb{N}|$. We saw in class that $|{}^{\mathbb{N}}\mathbb{N}| = 2^{\aleph_0}$. Now for the other direction, let us define a function $F : {}^{\mathbb{N}}\{0, 1\} \to A$.

The idea is to code each value f(n) by changing which elements are mapped to 2n and which are mapped to 2n + 1.

For each $f : \mathbb{N} \to \{0, 1\}$, we define F(f)(4n) = F(f)(4n + 1) = 2n and F(f)(4n+2) = F(f)(4n+3) = 2n+1 if f(n) = 0 and F(f)(4n) = F(f)(4n+3) = 2n + 1 and F(f)(4n + 1) = F(f)(4n + 2) = 2n if f(n) = 1. A formula which does it is as follows:

$$F(f)(m) = \begin{cases} \frac{m-1}{2} & m \in \mathbb{N}_{odd} \\ \frac{m+1-(-1)^{f(\frac{m}{4})}}{2} & 4|m| \\ \frac{m-1+(-1)^{f(\frac{m-2}{4})}}{2} & otherwise \end{cases}$$

It follows that for every *n*, there are precisely two *m*'s (by splitting into case whether *n* is even or odd and if $f(\frac{n}{2})$ is 0 or 1) such that F(f)(m) = n, and therefore F(f) is double-valued. Also, if $f \neq g$ then for some *n*, $f(n) \neq g(n)$. WLOG f(n) = 0 and g(n) = 1. Then F(f)(4n) = 2n and F(g)(4n) = 2n + 1, hence $F(f)(4n) \neq F(g)(4n)$ and therefore $F(f) \neq F(g)$. It follows that *F* is injective. It follows that $|\mathbb{N}\{0,1\}| \leq |A|$. By Cantor-Bernstein, we conclude that $|A| = 2^{\aleph_0}$.