PROBLEM SET 1

TOM BENHAMOU, UNIVERSITY OF ILLINOIS AT CHICAGO

Assume $A x 0, A x_{1}, A x 3-A x 6$.
Problem 1. Prove that for any set A, the identity function $I d_{A}=\{\langle a, a\rangle \mid a \in A\}$ exists and is unique.

Problem 2. Prove that for any function $f: A \rightarrow B$ then for every $Y \in B, f^{-1}[Y]$ exists.

Problem 3. Prove that if E is an equivalence relation over a set A then $A / E:=$ $\left\{[a]_{E} \mid a \in A\right\}$ exists.

Problem 4. Let $\langle A, R\rangle$ be a well-ordered set and assume that A is infinite. Prove that either $\langle A, R\rangle \simeq\langle\mathbb{N},<\rangle$ or there is $a \in A$ such that $\left\langle A_{R}[a], R\right\rangle \simeq$ $\langle\mathbb{N},<\rangle$. [Hint: The tricheotomy theorem]

Problem 5. On $\mathbb{N} \times \mathbb{N}$ define the order $\langle n, m\rangle \prec\left\langle n^{\prime}, m^{\prime}\right\rangle$ iff $\max (n, m)<\max \left(n^{\prime}, m^{\prime}\right)$ or $\max (n, m)=\max \left(n^{\prime}, m^{\prime}\right)$ and $\langle n, m\rangle<_{\text {Lex }}\left\langle n^{\prime}, m^{\prime}\right\rangle$. Prove that \prec is a well order of $\mathbb{N} \times \mathbb{N}$ and that $\langle\mathbb{N} \times \mathbb{N}, \prec\rangle \simeq\langle\mathbb{N},<\rangle$.

Problem 6. Prove that if $\langle A, R\rangle$ is a well-ordered set and $f: A \rightarrow A$ is an order isomorphism then $f=I d$. Can you find a counterexample if A is not well-ordered?

Problem 7. Prove that $A x 0, A x 1, A x 3, A x 4$ are not enough to prove that there is a set with three elements.
[Hint: Let $T_{0}=\emptyset$ and recursively define $T_{n+1}=\left\{X \subseteq T_{n} \mid\right.$ $|X| \leq 2\}$ and $T=\cup_{n<\omega} T_{n}$. Consider the model $\mathcal{M}=(T, \in)$.]

