MATH 504: PRELIMINARIES

TOM BENHAMOU
UNIVERSITY OF ILLINOIS AT CHICAGO

1. Definition sets

1.1. The list principle.

$$
\{a, b, c, \ldots, z\},\{1,5,17\},\{\{1,2\},\{2,3\}\}
$$

Formally, we can define the "List Principle" by

$$
a \in\left\{a_{1}, \ldots, a_{n}\right\} \equiv a=a_{1} \vee a=a_{2} \ldots \vee a=a_{n}
$$

Let us denote the set of natural numbers by: $\mathbb{N}=\{0,1,2, \ldots\}$
The membership relation: $a \in A$ is the statement that the object a is a member of the set A

Remark 1.1. Bounded quantifiers: it will be convenient to use the notion of quantifiers which are bounded in a given set A :

$$
\begin{aligned}
& \forall x \in A \cdot p(x) \equiv \forall x \cdot x \in A \rightarrow p(x) \\
& \exists x \in A \cdot p(x) \equiv \exists x \cdot x \in A \wedge p(x)
\end{aligned}
$$

We think of these quantifiers as quatifiters which range over a given set.
1.2. The separation principle. Given a set A an a predicate $p(x)$ where x is a free variable in the set A, we can separate from A the elements $a \in A$ which satisfy $p(a)$ into a new set. This separated set is denoted by:

$$
\{x \in A \mid p(x)\}
$$

This reads as "the set of all x in A such that $p(x)$ holds true". Define $a \in\{x \in A \mid p(x)\} \equiv a \in A \wedge p(a)$
1.3. The replacement principle. Let A be a set and $f(x)$ some operation/ function on the elements of A. We can replace every memeber a of the set A by the outcome of the operation $f(a)$ and collect all the outcomes into a new set. This new collection is denoted by:

$$
\{f(x) \mid x \in A\}
$$

This reads as "the set of all outcomes $f(x)$ where the parameter x runs in the set A ". Define $a \in\{f(x) \mid x \in A\} \equiv \exists x \in A . f(x)=a$

Global variables for famous sets:
(1) $\mathbb{N}=\{0,1,2,3, \ldots$.

[^0](2) The set of positive natural numbers is: $\mathbb{N}_{+}=\{x \in \mathbb{N} \mid x>0\}=$ $\{1,2,3,4, \ldots$.
(3) The set of integers is: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
(4) The set of fractions/ rational numbers is: $\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z} \wedge n \neq 0\right\}$
(5) The set of real numbers is denoted by \mathbb{R}. We will formally define the reals only later in this course. Right now, We will simply describe them as numbers which have a (possibly infinite) decimal representation such as: $15.6755897847566372 \ldots \ldots$. Among the real numbers, one can find $\sqrt{2}, \pi, e$. One of the most important properties of the reals is that the rational numbers are dense inside them (we will prove that):
\[

$$
\begin{gathered}
\forall r_{1}, r_{2} \in \mathbb{R} . r_{1}<r_{2} \Rightarrow\left(\exists q \in \mathbb{Q} \cdot r_{1}<q<r_{2}\right) \\
\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\} .
\end{gathered}
$$
\]

(6) The intervals:

- $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$ denotes the open interval between a and b.
- $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$ the closed interval.
- $[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}$. Define similarly $(a, b]$.
- $(a, \infty)=\{x \in \mathbb{R} \mid a<x\}$ is the infinite ray. Similarly define $[a, \infty),(-\infty, a),(-\infty, a]$. Note that $(a, \infty]$ is not defined since ∞ is not a natural number.
(7) \emptyset denoted the empty set, which is characterized by the following property: $\forall x . x \notin \emptyset$. Namely, the empty set is a set with no element. It is sometimes convenient to think of $\emptyset=\{ \}$.

1.4. Inclusion and the extensionality principle.

Definition 1.2. Let A, B be any sets. We say that A is included in B and denote it by $A \subseteq B$ if

$$
\forall x . x \in A \Rightarrow x \in B
$$

In other words, if every element of A is an element of B. Using bounded quantifiers we can say that $A \subseteq B$ is the statement $\forall x \in A . x \in B$.

Theorem 1.3. For every set $A, \emptyset \subseteq A$.
Definition 1.4. We denote by $A \nsubseteq B$ if $\neg(A \subseteq B)$, namely, if $\exists x \in A . x \notin B$. We denote $A \subsetneq B$ if $A \subseteq B$ and $A \neq B$.
1.5. Set equality. The extensionality principle is a basic principle (axiom) in set theory which expresses the fact the a set is determined by its elements.

Definition 1.5. The extesionality principle is the fact that for any two sets A, B :

$$
A=B \Leftrightarrow(A \subseteq B) \wedge(B \subseteq A)
$$

This means that when we wish to prove set equality $A=B$, we do so by proving a double inclusion.

1.6. Set operations.

Definition 1.6. Let A, B be sets
(1) The intersection of the sets is defined by $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
(2) The union of the two sets is denoted by $A \cup B=\{x \mid x \in A \vee x \in B\}$
(3) The difference of the sets is defined by $A \backslash B=\{x \in A \mid x \notin B\}$

In the literature, difference of sets is sometimes denoted by $A-B$.
(4) The complement of A inside a supset U of A is denoted by $A^{c}=U \backslash A$. This is conceptually different from difference since we assume that U is some framework set and then A^{c} is an operation on a single set.
(5) The symmetric difference of the sets is denoted by $A \Delta B=(A \backslash B) \cup$ $(B \backslash A)$.

Proposition 1.7. Sets operations identities:
(1) Associativity:
(a) $A \cap(B \cap C)=(A \cap B) \cap C$.
(b) $A \cup(B \cup C)=(A \cup B) \cup C$.
(c) $A \Delta(B \Delta C)=(A \Delta B) \Delta C$.
(2) Commutativity:
(a) $A \cap B=B \cap A$.
(b) $A \cup B=B \cup A$.
(c) $A \Delta B=B \Delta A$.
(3) Distributivity:
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(4) Identities of difference and De-Morgan low's for sets:
(a) $A \backslash B=A \cap B^{c}$.
(b) $(A \cup B)^{c}=A^{c} \cap B^{c}$.
(c) $(A \cap B)^{c}=A^{c} \cup B^{c}$.
(d) $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$
(e) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
(5) Identities of the empty set:
(a) $A \cap \emptyset=\emptyset$.
(b) $A \cup \emptyset=A$.
(c) $A \backslash \emptyset=A$.
(d) $\emptyset \backslash A=\emptyset$.
(e) $A \Delta \emptyset=A$.
(6) Identities of a set and itself:
(a) $A \cap A=A$.
(b) $A \cup A=A$.
(c) $A \backslash A=\emptyset$.
(d) $A \Delta A=\emptyset$.

Proposition 1.8. $A=B \Leftrightarrow A \Delta B=\emptyset$
Proposition 1.9. The following are equivalent:
(1) $A \subseteq B$
(2) $A \cap B=A$
(3) $A \backslash B=\emptyset$
(4) $A \cup B=B$

1.7. The power set.

Definition 1.10. Let A be any set. define the power set of A as the set f all possible subsets of A. We denote it by

$$
P(A)=\{x \mid x \subseteq A\}
$$

Definition 1.11. For a finite set A, we denote be $|A|$ the number of elements in the set A. For example $|\{1,2,3,18,-3\}|=5$ and $|(-5,5) \cap \mathbb{Z}|=9$.

Theorem 1.12. Let A be a finite set then $|P(A)|=2^{|A|}$.

1.8. Ordered pairs and Cartesian product.

Definition 1.13. Let x, y be two objects, the ordered pair of x and y is defined by $\langle x, y\rangle=\{\{x\},\{x, y\}\}$.

The basic property of pairs is the following property for which we omit the proof:

Theorem 1.14 (Eauality of pairs). For every a, b, c, d

$$
\langle a, b\rangle=\langle c, d\rangle \Leftrightarrow a=c \wedge b=d
$$

Definition 1.15. Let A, B be two sets. The Cartesian product of the sets (named after René Descartes) is defined by $A \times B=\{\langle a, b\rangle \mid a \in A, B \in B\}$

Also define the square of a set A is to be $A \times A$.
The Real plane is defined to be the set \mathbb{R}^{2}.
Definition 1.16. Let us define by recursion an n-tuple. A 1-tuple is defined by $\langle a\rangle=a$. Given we have defined an n-tuple, we define $n+1$-tuples using n-tuples and ordered pairs we have already defined.:

$$
\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle=\left\langle\left\langle a_{1}, \ldots a_{n}\right\rangle, a_{n+1}\right\rangle
$$

Example 1.17. (1) $\left\langle a_{0}\right\rangle=a_{0}$.

(2) Note that a 2 -tuple is the same as an ordered pairs. Indeed, let us denote momentarily the 2 -tuple by $\left\langle a_{0}, a_{1}\right\rangle^{*}$, then we have

$$
\left\langle a_{0}, a_{1}\right\rangle^{*}=\left\langle\left\langle a_{0}\right\rangle, a_{1}\right\rangle=\left\langle a_{0}, a_{1}\right\rangle
$$

(3) $\left\langle a_{0}, a_{1}, a_{2}\right\rangle=\left\langle\left\langle a_{0}, a_{1}\right\rangle, a_{2}\right\rangle=$
$\left\{\left\{\left\langle a_{0}, a_{1}\right\rangle\right\},\left\{\left\langle a_{0}, a_{1}\right\rangle, a_{2}\right\}\right\}=\left\{\left\{\left\{\left\{a_{0}\right\},\left\{a_{0}, a_{1}\right\}\right\}\right\},\left\{\left\{\left\{a_{0}\right\},\left\{a_{0}, a_{1}\right\}\right\}, a_{2}\right\}\right\}$
(4) $\left\langle a_{0}, a_{1}, a_{2}, a_{3}\right\rangle=\left\langle\left\langle\left\langle a_{0}, a_{1}\right\rangle, a_{2}\right\rangle, a_{3}\right\rangle$

Definition 1.18. $\prod_{i=1}^{n} A_{i}=A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \mid \alpha_{i} \in A_{i}\right\}$ $A^{n}=\prod_{i=1}^{n} A$

2. Relations

Definition 2.1. A relation from the set A to the set B is set $R \subseteq A \times B$.
Definition 2.2. Let R be a relation from A to B. Denote:
(1) $a R b \Leftrightarrow\langle a, b\rangle \in R$.
(2) $\operatorname{dom}(R)=\{a \in A \mid \exists b \in B .\langle a . b\rangle \in R\}$.
(3) $\operatorname{Im}(R)=\{b \in B \mid \exists a \in A$. $\langle a, b\rangle \in R\}$.
(4) $R^{-1}=\{\langle b, a\rangle \mid\langle a, b\rangle \in R\}$.
(5) $I d_{A}=\{\langle a, a\rangle \mid a \in A\}$.
(6) If S is a relation from B to C we define:

$$
S \circ R=\{\langle a, c\rangle \in A \times C \mid \exists b \in B .\langle a, b\rangle \in R \wedge\langle b, c\rangle \in S\}
$$

Proposition 2.3. (1) $\left(R^{-1}\right)^{-1}=R$.
(2) $R \circ I d_{A}=R, I d_{B} \circ R=R$.
(3) $(T \circ S) \circ R=T \circ(S \circ R)$.
(4) $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$

2.1. Relations over a single set.

Definition 2.4. A relation R from A to A (i.e. $R \subseteq A^{2}$) is called a relation on the set A.

Definition 2.5 (Properties of relations and equivalence relation). Let R be a relation on a set A. We say that:
(1) R is reflexive (on A) if: $\forall a \in A . a R a$.
(2) R is symmetric if: $\forall a, b \in A . a R b \Rightarrow b R a$.
(3) R is transitive if: $\forall a, b, c \in A .(a R b) \wedge(b R c) \Rightarrow a R c$.
(4) R is anti reflexive if: $\forall x \cdot\langle x, x\rangle \notin R$.
(5) R is weekly anti symmetric if $\forall a, b \in A . a R b \wedge b R a \Rightarrow a=b$.
(6) R is strongly anti symmetric if $\forall a, b \in A \cdot a R b \Rightarrow b R a$
(7) R is an equivalence relation if it is reflexive, symmetric and transitive.
(8) R is an weak order if R transitive, reflexive and weakly anti symmetric.
(9) R is strong order if R is transitive and strongly anti symmetric.
(10) An order R (either weak or strong) is total/linear if every two elements are comparable, namely:

$$
\forall a, b \in A . a=b \vee a R b \vee b R a
$$

2.2. quivalence relations.

Definition 2.6. Let E be an equivalence relation on a set A. The equivalence class of an element $a \in A$ is the set of all conditions $b \in A$ such that a is E-equivalent to b. Formally, we denote the equivalence class of a by

$$
[a]_{E}=\{b \in A \mid a E b\}
$$

Proposition 2.7. Let E be an equivalence relation on A. Then for every $a, b \in A$:
(1) Either $[a]_{E}=[b]_{E}$.
(2) $\operatorname{Or}[a]_{E} \cap[b]_{E}=\emptyset$

Moreover, $[a]_{E}=[b]_{E}$ if and only if aEb.
Corollary 2.8. The following are equivalent:
(1) $a \in b$.
(2) $[a]_{E} \neq[b]_{E}$.
(3) $[a]_{E} \cap[b]_{E}=\emptyset$.

Definition 2.9. Let E be an equivalence relation on A. The quotient set of A by E (a.k.a " A modulo E ") is the set of all equivalence classes. ${ }^{1}$. We denote it by ${ }^{2}$

$$
A / E=\left\{[a]_{E} \mid a \in A\right\}
$$

Theorem 2.10. A / E is a partition of A and any partition of A is induced from some equivalence relation.

2.3 . orders.

2.4. Functions.

Definition 2.11. Let A, B be two sets. A relation R from A to B is called:
(1) Total on A, if $\forall a \in A . \exists b \in B . a R b$.
(2) univalent, if $\forall a \in A \cdot \forall b_{1}, b_{2} \in B \cdot a R b_{1} \wedge a R b_{2} \Rightarrow b_{1}=b_{2}$.
(3) A function from A to B if it is total and univalent.

Notation 2.12. If f is a function from A to B we denote it by $f: A \rightarrow B$. Also if $f: A \rightarrow B$ is a function, we denote $f(a)=b$ if and only if $\langle a, b\rangle \in f$. So $f(a)$ is the unique object in the set B that the function f attaches to the element a.
Definition 2.13. A sequence of elements in the set A is a function $f: \mathbb{N} \rightarrow$ A. In calculus we sometime denote $a_{n}=f(n)$ and $\left(a_{n}\right)_{n=0}^{\infty}=f$.
Remark 2.14. Let $f: A \rightarrow B$ be a function. The domain of f is simply A, we denote $\operatorname{dom}(f)=A$. The range of f is B and we denote $\operatorname{Im}(f)=B$. The image of f is the set $\operatorname{img}(f)=\{f(a) \mid a \in A\}$.
Definition 2.15. Let A, B be two sets. We denote the set of all functions from A to B by

$$
{ }^{A} B=\{f \in P(A \times B) \mid f \text { is a function from } A \text { to } B\}
$$

Theorem 2.16 (Functions equality). Let f, g be two function. Then the following are equivalent:
(1) $\operatorname{dom}(f)=\operatorname{dom}(g)$ and $\forall x \in \operatorname{dom}(f) \cdot f(x)=g(x)$.
(2) $f=g$.

Here are some of the most common ways to define functions in this wat:

[^1](1) Defining a function with a formula: The definition has the form " Define $f: A \rightarrow B$ by $f(a)=$ (some formula)". For example, we can define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(r)=2$, this is the constant function which for every real r returns the value 2. Another example, define g : $P(\mathbb{N}) \rightarrow P(\mathbb{N})$ by $g(X)=X \cup\{1,2\}$. Then for example $g(\{1,3,4\})=$ $\{1,2,3,4\}$ and $g(\mathbb{N})=\mathbb{N}$.

Important: If we define $f: A \rightarrow B$ by a formula $f(a)=($ some formula) we must always make sure that the functions we define are well defined in the sense that:
(a) The function is total. Practically, this means that we should make sure that the formula for $f(a)$ is defined for every $a \in A$.
(b) The function is univalent. This means that for every $a \in A$, the formula for $f(a)$ points to a single element. (This is trivial in most cases)
(c) for every $a \in A$ the formula for $f(a)$ returns an element in B. So the ranged we declared when we wrote $f: A \rightarrow B$ is indeed correct.
(2) Definition of a function by cases: Suppose we which to define a function on a set A, and for some of the elements of A we want one formula and for the another part of A we want to use a different formula. We can do that the following way: "Define $f: A \rightarrow B$ by

$$
f(a)= \begin{cases}(\text { first formula }) & (\text { first condition on } a) \\ (\text { second formula }) & (\text { second condition on a) } \\ \ldots & \end{cases}
$$

Definition 2.17. Let $f: A \rightarrow B$ be a function and $X \subseteq A$. We define the restriction of f to X, denote by $f \upharpoonright X: X \rightarrow B$, and a function with domain $\operatorname{dom}(f \upharpoonright X)=X$ and for every $x \in X,(f \upharpoonright X)(x)=f(x)$.

Definition 2.18. Let $f: A \rightarrow B$ be a function we sat that f is:
(1) One to one/ injective: if for every $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$.
(2) Onto/ surjective: if for every $b \in B$ there is $a \in A$ such that $f(a)=b$.

Theorem 2.19. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Then the composition of g in f is a function $g \circ f: A \rightarrow C$, with domain A and range C such that for each $a \in A,(g \circ f)(a)=g(f(a))$.

Moreover, the composition of $1-1 /$ onto is $1-1 /$ onto
Definition 2.20. A function $f: A \rightarrow B$ is invertible if there is a function $g: B \rightarrow A$ such that:

$$
g \circ f=i d_{A} \quad \text { and } f \circ g=i d_{B}
$$

Theorem 2.21. If g_{1}, g_{2} are two inverse functions of f then $g_{1}=g_{2}$. Moreover, the inverse function of f is the relation f^{-1}.

Theorem 2.22. A function $f: A \rightarrow B$ is invertible if and only if it is one-to-one and onto.

3. Equinumerability

Definition 3.1. Let A, B be any sets. We say that:
(1) $|A|=|B| " A, B$ have the same cardinality" if there is $f: A \rightarrow B$ which is invertible.
(2) $|A| \leq|B|$ "the cardinality of A is at most the cardinality of B " if there is $f: A \rightarrow B$ which is injective.
(3) $|A| \neq|B|$ if $\neg(|A|=|B|)$, namely if there is no invertible $f: A \rightarrow B$.
(4) $|A|<|B|$ if $|A| \leq|B|$ and $|A| \neq|B|$.

Claim 3.1.1. for any sets A, B :
(1) $A \subseteq B \rightarrow|A| \leq|B|$.
(2) $|A|=|A|$.
(3) $|A|=|B| \rightarrow|B|=|A|$.
(4) $|A|=|B| \wedge|B|=|C| \rightarrow|A|=|C|$.
(5) $|A| \leq|B| \leq|C| \rightarrow|A| \leq|C|$.
(6) $|A|=|B|<|C| \rightarrow|A|<|C|$.
(7) $|A|<|B|=|C| \rightarrow|A|<|C|$

Claim 3.1.2. $(A C)|A| \leq|B|$ iff there is $f: B \rightarrow A$ onto.
Proposition 3.2. Let $A, A^{\prime}, B, B^{\prime}$ be sets such that $|A|=\left|A^{\prime}\right|$ and $|B|=$ $\left|B^{\prime}\right|$. Then:
(1) $|P(A)|=\left|P\left(A^{\prime}\right)\right|$.
(2) $|A \times B|=\left|A^{\prime} \times B^{\prime}\right|$.
(3) $\left|{ }^{B} A\right|=\left|{ }^{B^{\prime}} A^{\prime}\right|$.
(4) If A, B are disjoint and A^{\prime}, B^{\prime} are disjoint then $|A \uplus B|=\left|A^{\prime} \uplus B^{\prime}\right|$.

Theorem 3.3 (Cantor-Berstein). Let A, B be sets and supose that $|A| \leq$ $|B| \wedge|B| \leq|A|$ then $|A|=|B|$.

Corollary 3.4. If $|A|<|B| \leq|C|$ or $|A| \leq|B|<|C|$ then $|A|<|C|$.
Theorem 3.5 (Cantor-Schröeder-Bernstein). If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$.

Definition 3.6. A set A is countable if $|A|=|\mathbb{N}|$ and we denote it by $|A|=\aleph_{0}$.

Theorem 3.7. ($A C$) If A is infinite then $\aleph_{0} \leq|A|$.
Theorem 3.8. The following sets are countable: $\mathbb{Z}, \mathbb{N}_{\text {even }}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N}^{n},\{X \in$ $P(\mathbb{N}) \mid X$ is finite $\}$

Theorem 3.9. The countable union of countable sets if countable
Theorem 3.10 (Cantor's Diagonalization Theorem). $\aleph_{0}<\left.\right|^{\mathbb{N}}\{0,1\} \mid$

Definition 3.11. $2^{|A|}=\left|{ }^{A}\{0,1\}\right|$
Theorem 3.12. $|P(A)|=2^{|A|}$
Theorem 3.13 (Cantor's Theorem). $|A|<2^{|A|}$
Theorem 3.14. $|\mathbb{R}|=2^{\aleph_{0}},\left|\mathbb{R}^{n}\right|=2^{\aleph_{0}}$.
Theorem 3.15. $|[\alpha, \beta]|=|(\alpha, \beta)|=|(\alpha, \infty)|$

[^0]: Date: January 10, 2023.

[^1]: ${ }^{1}$ Needless to say, without repetitions.
 ${ }^{2}$ Do not confused A / E with set difference $A \backslash E$.

