MATH 504: PRELIMINARIES

TOM BENHAMOU UNIVERSITY OF ILLINOIS AT CHICAGO

1. Definition sets

1.1. The list principle.

$$\{a, b, c, \dots, z\}, \{1, 5, 17\}, \{\{1, 2\}, \{2, 3\}\}$$

Formally, we can define the "List Principle" by

$$a \in \{a_1, \dots, a_n\} \equiv a = a_1 \lor a = a_2 \dots \lor a = a_n$$

Let us denote the set of *natural numbers* by: $\mathbb{N} = \{0, 1, 2, ...\}$

The membership relation: $a \in A$ is the statement that the object a is a member of the set A

Remark 1.1. Bounded quantifiers: it will be convenient to use the notion of quantifiers which are bounded in a given set A:

$$\forall x \in A.p(x) \equiv \forall x.x \in A \to p(x)$$
$$\exists x \in A.p(x) \equiv \exists x.x \in A \land p(x)$$

We think of these quantifiers as quatifiters which range over a given set.

1.2. The separation principle. Given a set A and a predicate p(x) where x is a free variable in the set A, we can *separate* from A the elements $a \in A$ which satisfy p(a) into a new set. This separated set is denoted by:

$$\{x \in A \mid p(x)\}$$

This reads as "the set of all x in A such that p(x) holds true". Define $a \in \{x \in A \mid p(x)\} \equiv a \in A \land p(a)$

1.3. The replacement principle. Let A be a set and f(x) some operation/ function on the elements of A. We can *replace* every memeber a of the set A by the outcome of the operation f(a) and collect all the outcomes into a new set. This new collection is denoted by:

$$\{f(x) \mid x \in A\}$$

This reads as "the set of all outcomes f(x) where the parameter x runs in the set A". Define $a \in \{f(x) \mid x \in A\} \equiv \exists x \in A. f(x) = a$

Global variables for famous sets:

(1) $\mathbb{N} = \{0, 1, 2, 3,\}$

Date: January 10, 2023.

- (2) The set of positive natural numbers is: $\mathbb{N}_{+} = \{x \in \mathbb{N} \mid x > 0\} = \{1, 2, 3, 4,\}$
- (3) The set of integers is: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- (4) The set of fractions/ rational numbers is: $\mathbb{Q} = \{\frac{m}{n} \mid m, n \in \mathbb{Z} \land n \neq 0\}$
- (5) The set of real numbers is denoted by \mathbb{R} . We will formally define the reals only later in this course. Right now, We will simply describe them as numbers which have a (possibly infinite) decimal representation such as: 15.6755897847566372...... Among the real numbers, one can find $\sqrt{2}, \pi, e$. One of the most important properties of the reals is that the rational numbers are dense inside them (we will prove that):

$$\forall r_1, r_2 \in \mathbb{R}. r_1 < r_2 \Rightarrow (\exists q \in \mathbb{Q}. r_1 < q < r_2)$$
$$\mathbb{R}_+ = \{ x \in \mathbb{R} \mid x > 0 \}.$$

- (6) The intervals:
 - $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ denotes the open interval between a and b.
 - $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ the closed interval.
 - $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$. Define similarly (a,b].
 - (a,∞) = {x ∈ ℝ | a < x} is the *infinite ray*. Similarly define [a,∞), (-∞, a), (-∞, a]. Note that (a,∞] is not defined since ∞ is not a natural number.
- (7) \emptyset denoted the empty set, which is characterized by the following property: $\forall x.x \notin \emptyset$. Namely, the empty set is a set with no element. It is sometimes convenient to think of $\emptyset = \{\}$.

1.4. Inclusion and the extensionality principle.

Definition 1.2. Let A, B be any sets. We say that A is included in B and denote it by $A \subseteq B$ if

$$\forall x.x \in A \Rightarrow x \in B$$

In other words, if every element of A is an element of B. Using bounded quantifiers we can say that $A \subseteq B$ is the statement $\forall x \in A.x \in B$.

Theorem 1.3. For every set $A, \emptyset \subseteq A$.

Definition 1.4. We denote by $A \nsubseteq B$ if $\neg (A \subseteq B)$, namely, if $\exists x \in A.x \notin B$. We denote $A \subsetneq B$ if $A \subseteq B$ and $A \neq B$.

1.5. Set equality. The extensionality principle is a basic principle (axiom) in set theory which expresses the fact the a set is determined by its elements.

Definition 1.5. The extessionality principle is the fact that for any two sets A, B:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

This means that when we wish to prove set equality A = B, we do so by proving a *double inclusion*.

 $\mathbf{2}$

1.6. Set operations.

Definition 1.6. Let A, B be sets

- (1) The *intersection* of the sets is defined by $A \cap B = \{x \mid x \in A \land x \in B\}$.
- (2) The union of the two sets is denoted by $A \cup B = \{x \mid x \in A \lor x \in B\}$
- (3) The difference of the sets is defined by $A \setminus B = \{x \in A \mid x \notin B\}$ In the literature, difference of sets is sometimes denoted by A - B.
- (4) The *complement* of A inside a supset U of A is denoted by $A^c = U \setminus A$. This is conceptually different from difference since we assume that U is some framework set and then A^c is an operation on a single set.
- (5) The symmetric difference of the sets is denoted by $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

Proposition 1.7. Sets operations identities:

(1) Associativity: (a) $A \cap (B \cap C) = (A \cap B) \cap C$. (b) $A \cup (B \cup C) = (A \cup B) \cup C$. (c) $A\Delta(B\Delta C) = (A\Delta B)\Delta C$. (2) Commutativity: (a) $A \cap B = B \cap A$. (b) $A \cup B = B \cup A$. (c) $A\Delta B = B\Delta A$. (3) Distributivity: (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$ (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$ (4) Identities of difference and De-Morgan low's for sets: (a) $A \setminus B = A \cap B^c$. (b) $(A \cup B)^c = A^c \cap B^c$. (c) $(A \cap B)^c = A^c \cup B^c$. (d) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ (e) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$ (5) Identities of the empty set: (a) $A \cap \emptyset = \emptyset$. (b) $A \cup \emptyset = A$. (c) $A \setminus \emptyset = A$. (d) $\emptyset \setminus A = \emptyset$. (e) $A\Delta \emptyset = A$. (6) Identities of a set and itself: (a) $A \cap A = A$. (b) $A \cup A = A$. (c) $A \setminus A = \emptyset$. (d) $A\Delta A = \emptyset$. **Proposition 1.8.** $A = B \Leftrightarrow A\Delta B = \emptyset$

Proposition 1.9. The following are equivalent:

(2) $A \cap B = A$ (3) $A \setminus B = \emptyset$ (4) $A \cup B = B$

1.7. The power set.

Definition 1.10. Let A be any set. define the *power set* of A as the set f all possible subsets of A. We denote it by

$$P(A) = \{x \mid x \subseteq A\}$$

Definition 1.11. For a finite set A, we denote be |A| the number of elements in the set A. For example $|\{1, 2, 3, 18, -3\}| = 5$ and $|(-5, 5) \cap \mathbb{Z}| = 9$.

Theorem 1.12. Let A be a finite set then $|P(A)| = 2^{|A|}$.

1.8. Ordered pairs and Cartesian product.

Definition 1.13. Let x, y be two objects, the *ordered pair* of x and y is defined by $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$.

The basic property of pairs is the following property for which we omit the proof:

Theorem 1.14 (Eauality of pairs). For every a, b, c, d

 $\langle a,b\rangle=\langle c,d\rangle \Leftrightarrow a=c\wedge b=d$

Definition 1.15. Let A, B be two sets. The *Cartesian product* of the sets (named after René Descartes) is defined by $A \times B = \{\langle a, b \rangle \mid a \in A, B \in B\}$

Also define the square of a set A is to be $A \times A$.

The *Real plane* is defined to be the set \mathbb{R}^2 .

Definition 1.16. Let us define by recursion an *n*-tuple. A 1-tuple is defined by $\langle a \rangle = a$. Given we have defined an *n*-tuple, we define n + 1-tuples using *n*-tuples and ordered pairs we have already defined.:

$$\langle a_1, ..., a_n, a_{n+1} \rangle = \langle \langle a_1, ...a_n \rangle, a_{n+1} \rangle$$

Example 1.17. (1) $\langle a_0 \rangle = a_0$.

(2) Note that a 2-tuple is the same as an ordered pairs. Indeed, let us denote momentarily the 2-tuple by $\langle a_0, a_1 \rangle^*$, then we have

$$\langle a_0, a_1 \rangle^* = \langle \langle a_0 \rangle, a_1 \rangle = \langle a_0, a_1 \rangle$$

$$(3) \ \langle a_0, a_1, a_2 \rangle = \langle \langle a_0, a_1 \rangle, a_2 \rangle = \\ \{ \{ \langle a_0, a_1 \rangle \}, \{ \langle a_0, a_1 \rangle, a_2 \} \} = \{ \{ \{ \{a_0\}, \{a_0, a_1\} \} \}, \{ \{ \{a_0\}, \{a_0, a_1\} \}, a_2 \} \} \\ (4) \ \langle a_0, a_1, a_2, a_3 \rangle = \langle \langle \langle a_0, a_1 \rangle, a_2 \rangle, a_3 \rangle$$

Definition 1.18. $\prod_{i=1}^{n} A_i = A_1 \times A_2 \times \dots \times A_n = \{ \langle \alpha_1, \dots, \alpha_n \rangle \mid \alpha_i \in A_i \}$ $A^n = \prod_{i=1}^{n} A$

4

2. Relations

Definition 2.1. A relation from the set A to the set B is set $R \subseteq A \times B$.

Definition 2.2. Let R be a relation from A to B. Denote:

- (1) $aRb \Leftrightarrow \langle a, b \rangle \in R$.
- $(2) \ dom(R) = \{a \in A \mid \exists b \in B. \langle a.b \rangle \in R\}.$
- (3) $Im(R) = \{b \in B \mid \exists a \in A. \langle a, b \rangle \in R\}.$
- (4) $R^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in R \}.$
- (5) $Id_A = \{ \langle a, a \rangle \mid a \in A \}.$
- (6) If S is a relation from B to C we define:

$$S \circ R = \{ \langle a, c \rangle \in A \times C \mid \exists b \in B. \langle a, b \rangle \in R \land \langle b, c \rangle \in S \}$$

Proposition 2.3. (1) $(R^{-1})^{-1} = R$.

(2) $R \circ Id_A = R$, $Id_B \circ R = R$. (3) $(T \circ S) \circ R = T \circ (S \circ R)$. (4) $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

2.1. Relations over a single set.

Definition 2.4. A relation R from A to A (i.e. $R \subseteq A^2$) is called a relation on the set A.

Definition 2.5 (Properties of relations and equivalence relation). Let R be a relation on a set A. We say that:

- (1) R is reflexive (on A) if: $\forall a \in A.aRa$.
- (2) R is symmetric if: $\forall a, b \in A.aRb \Rightarrow bRa$.
- (3) R is transitive if: $\forall a, b, c \in A.(aRb) \land (bRc) \Rightarrow aRc.$
- (4) R is anti reflexive if: $\forall x. \langle x, x \rangle \notin R$.
- (5) R is weekly anti symmetric if $\forall a, b \in A.aRb \land bRa \Rightarrow a = b$.
- (6) R is strongly anti symmetric if $\forall a, b \in A.aRb \Rightarrow bRa$
- (7) R is an *equivalence relation* if it is reflexive, symmetric and transitive.
- (8) R is an *weak order* if R transitive, reflexive and weakly anti symmetric.
- (9) R is strong order if R is transitive and strongly anti symmetric.
- (10) An order R (either weak or strong) is total/linear if every two elements are comparable, namely:

$$\forall a, b \in A.a = b \lor aRb \lor bRa$$

2.2. quivalence relations.

Definition 2.6. Let *E* be an equivalence relation on a set *A*. The *equivalence class* of an element $a \in A$ is the set of all conditions $b \in A$ such that *a* is *E*-equivalent to *b*. Formally, we denote the equivalence class of *a* by

$$[a]_E = \{b \in A \mid aEb\}$$

Proposition 2.7. Let *E* be an equivalence relation on *A*. Then for every $a, b \in A$:

(1) Either $[a]_E = [b]_E$. (2) $Or [a]_E \cap [b]_E = \emptyset$

Moreover, $[a]_E = [b]_E$ if and only if aEb.

Corollary 2.8. The following are equivalent:

(1)
$$a \not Eb.$$

(2) $[a]_E \neq [b]_E.$
(3) $[a]_E \cap [b]_E = \emptyset.$

Definition 2.9. Let E be an equivalence relation on A. The quotient set of A by E (a.k.a "A modulo E") is the set of **all** equivalence classes.¹. We denote it by²

$$A/E = \{ [a]_E \mid a \in A \}$$

Theorem 2.10. A/E is a partition of A and any partition of A is induced from some equivalence relation.

2.3. orders.

2.4. Functions.

Definition 2.11. Let A, B be two sets. A relation R from A to B is called:

- (1) Total on A, if $\forall a \in A. \exists b \in B. aRb$.
- (2) univalent, if $\forall a \in A. \forall b_1, b_2 \in B.aRb_1 \land aRb_2 \Rightarrow b_1 = b_2$.
- (3) A function from A to B if it is total and univalent.

Notation 2.12. If f is a function from A to B we denote it by $f : A \to B$. Also if $f : A \to B$ is a function, we denote f(a) = b if and only if $\langle a, b \rangle \in f$. So f(a) is the unique object in the set B that the function f attaches to the element a.

Definition 2.13. A sequence of elements in the set A is a function $f : \mathbb{N} \to A$. In calculus we sometime denote $a_n = f(n)$ and $(a_n)_{n=0}^{\infty} = f$.

Remark 2.14. Let $f : A \to B$ be a function. The domain of f is simply A, we denote dom(f) = A. The range of f is B and we denote Im(f) = B. The image of f is the set $img(f) = \{f(a) \mid a \in A\}$.

Definition 2.15. Let A, B be two sets. We denote the set of all functions from A to B by

 ${}^{A}B = \{ f \in P(A \times B) \mid f \text{ is a function from } A \text{ to } B \}$

Theorem 2.16 (Functions equality). Let f, g be two function. Then the following are equivalent:

(1) dom(f) = dom(g) and $\forall x \in$ dom(f).f(x) = g(x).(2) f = g.

Here are some of the most common ways to define functions in this wat:

¹Needless to say, without repetitions.

²Do not confused A/E with set difference $A \setminus E$.

(1) Defining a function with a formula: The definition has the form " Define $f : A \to B$ by f(a) = (some formula)". For example, we can define $f : \mathbb{R} \to \mathbb{R}$ by f(r) = 2, this is the constant function which for every real r returns the value 2. Another example, define g : $P(\mathbb{N}) \to P(\mathbb{N})$ by $g(X) = X \cup \{1, 2\}$. Then for example $g(\{1, 3, 4\}) =$ $\{1, 2, 3, 4\}$ and $g(\mathbb{N}) = \mathbb{N}$.

Important: If we define $f : A \to B$ by a formula f(a) =(some formula) we **must** always make sure that the functions we define are well defined in the sense that:

- (a) The function is total. Practically, this means that we should make sure that the formula for f(a) is defined for every $a \in A$.
- (b) The function is univalent. This means that for every $a \in A$, the formula for f(a) points to a single element. (This is trivial in most cases)
- (c) for every $a \in A$ the formula for f(a) returns an element in B. So the ranged we declared when we wrote $f : A \to B$ is indeed correct.
- (2) Definition of a function by cases: Suppose we which to define a function on a set A, and for some of the elements of A we want one formula and for the another part of A we want to use a different formula. We can do that the following way: "Define $f : A \to B$ by

$$f(a) = \begin{cases} \text{(first formula)} & \text{(first condition on } a) \\ \text{(second formula)} & \text{(second condition on } a) \\ \dots \end{cases}$$

Definition 2.17. Let $f : A \to B$ be a function and $X \subseteq A$. We define the *restriction of* f to X, denote by $f \upharpoonright X : X \to B$, and a function with domain $dom(f \upharpoonright X) = X$ and for every $x \in X$, $(f \upharpoonright X)(x) = f(x)$.

Definition 2.18. Let $f : A \to B$ be a function we sat that f is:

- (1) One to one/ injective: if for every $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$ then $a_1 = a_2$.
- (2) Onto/ surjective: if for every $b \in B$ there is $a \in A$ such that f(a) = b.

Theorem 2.19. Let $f : A \to B$ and $g : B \to C$ be two functions. Then the composition of g in f is a function $g \circ f : A \to C$, with domain A and range C such that for each $a \in A$, $(g \circ f)(a) = g(f(a))$.

Moreover, the composition of 1 - 1 onto is 1 - 1 onto

Definition 2.20. A function $f : A \to B$ is invertible if there is a function $g : B \to A$ such that:

$$g \circ f = id_A$$
 and $f \circ g = id_B$

Theorem 2.21. If g_1, g_2 are two inverse functions of f then $g_1 = g_2$. Moreover, the inverse function of f is the relation f^{-1} . **Theorem 2.22.** A function $f : A \to B$ is invertible if and only if it is one-to-one and onto.

3. Equinumerability

Definition 3.1. Let A, B be any sets. We say that:

- (1) |A| = |B| "A, B have the same cardinality" if there is $f : A \to B$ which is invertible.
- (2) $|A| \leq |B|$ "the cardinality of A is at most the cardinality of B" if there is $f: A \to B$ which is injective.
- (3) $|A| \neq |B|$ if $\neg(|A| = |B|)$, namely if there is no invertible $f : A \to B$.
- (4) |A| < |B| if $|A| \le |B|$ and $|A| \ne |B|$.

Claim 3.1.1. for any sets A, B:

$$\begin{array}{ll} (1) \ A \subseteq B \to |A| \leq |B|. \\ (2) \ |A| = |A|. \\ (3) \ |A| = |B| \to |B| = |A|. \\ (4) \ |A| = |B| \land |B| = |C| \to |A| = |C|. \\ (5) \ |A| \leq |B| \leq |C| \to |A| \leq |C|. \\ (6) \ |A| = |B| < |C| \to |A| < |C|. \\ (7) \ |A| < |B| = |C| \to |A| < |C| \\ \end{array}$$

Claim 3.1.2. (AC) $|A| \leq |B|$ iff there is $f : B \to A$ onto.

Proposition 3.2. Let A, A', B, B' be sets such that |A| = |A'| and |B| = |B'|. Then:

- (1) |P(A)| = |P(A')|.
- $(2) |A \times B| = |A' \times B'|.$
- (3) $|^{B}A| = |^{B'}A'|.$
- (4) If A, B are disjoint and A', B' are disjoint then $|A \uplus B| = |A' \uplus B'|$.

Theorem 3.3 (Cantor-Berstein). Let A, B be sets and suppose that $|A| \leq |B| \wedge |B| \leq |A|$ then |A| = |B|.

Corollary 3.4. If $|A| < |B| \le |C|$ or $|A| \le |B| < |C|$ then |A| < |C|.

Theorem 3.5 (Cantor-Schröeder-Bernstein). If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|.

Definition 3.6. A set A is countable if $|A| = |\mathbb{N}|$ and we denote it by $|A| = \aleph_0$.

Theorem 3.7. (AC) If A is infinite then $\aleph_0 \leq |A|$.

Theorem 3.8. The following sets are countable: $\mathbb{Z}, \mathbb{N}_{even}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}, \mathbb{N}^n, \{X \in P(\mathbb{N}) \mid X \text{ is finite }\}$

Theorem 3.9. The countable union of countable sets if countable

Theorem 3.10 (Cantor's Diagonalization Theorem). $\aleph_0 < |^{\mathbb{N}} \{0, 1\}|$

Definition 3.11. $2^{|A|} = |^{A} \{0, 1\}|$ Theorem 3.12. $|P(A)| = 2^{|A|}$ Theorem 3.13 (Cantor's Theorem). $|A| < 2^{|A|}$ Theorem 3.14. $|\mathbb{R}| = 2^{\aleph_0}, |\mathbb{R}^n| = 2^{\aleph_0}$. Theorem 3.15. $|[\alpha, \beta]| = |(\alpha, \beta)| = |(\alpha, \infty)|$