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1. Definition sets

1.1. The list principle.

{a, b, c, ..., z}, {1, 5, 17}, {{1, 2}, {2, 3}}
Formally, we can define the ”List Principle” by

a ∈ {a1, ..., an} ≡ a = a1 ∨ a = a2... ∨ a = an

Let us denote the set of natural numbers by: N = {0, 1, 2, ...}
The membership relation: a ∈ A is the statement that the object a

is a member of the set A

Remark 1.1. Bounded quantifiers: it will be convenient to use the notion of
quantifiers which are bounded in a given set A:

∀x ∈ A.p(x) ≡ ∀x.x ∈ A → p(x)

∃x ∈ A.p(x) ≡ ∃x.x ∈ A ∧ p(x)

We think of these quantifiers as quatifiters which range over a given set.

1.2. The separation principle. Given a set A an a predicate p(x) where
x is a free variable in the set A, we can separate from A the elements a ∈ A
which satisfy p(a) into a new set. This separated set is denoted by:

{x ∈ A | p(x)}
This reads as “the set of all x in A such that p(x) holds true”. Define

a ∈ {x ∈ A | p(x)} ≡ a ∈ A ∧ p(a)

1.3. The replacement principle. Let A be a set and f(x) some opera-
tion/ function on the elements of A. We can replace every memeber a of
the set A by the outcome of the operation f(a) and collect all the outcomes
into a new set. This new collection is denoted by:

{f(x) | x ∈ A}
This reads as “the set of all outcomes f(x) where the parameter x runs in
the set A”. Define a ∈ {f(x) | x ∈ A} ≡ ∃x ∈ A.f(x) = a

Global variables for famous sets:

(1) N = {0, 1, 2, 3, ....}
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(2) The set of positive natural numbers is: N+ = {x ∈ N | x > 0} =
{1, 2, 3, 4, ....}

(3) The set of integers is: Z = {...,−2,−1, 0, 1, 2, ...}
(4) The set of fractions/ rational numbers is: Q = {m

n | m,n ∈ Z∧n ̸= 0}
(5) The set of real numbers is denoted by R. We will formally define the

reals only later in this course. Right now, We will simply describe
them as numbers which have a (possibly infinite) decimal represen-
tation such as: 15.6755897847566372....... Among the real numbers,
one can find

√
2, π, e. One of the most important properties of the

reals is that the rational numbers are dense inside them (we will
prove that):

∀r1, r2 ∈ R.r1 < r2 ⇒ (∃q ∈ Q.r1 < q < r2)

R+ = {x ∈ R | x > 0}.
(6) The intervals:

• (a, b) = {x ∈ R | a < x < b} denotes the open interval between
a and b.

• [a, b] = {x ∈ R | a ≤ x ≤ b} the closed interval.
• [a, b) = {x ∈ R | a ≤ x < b}. Define similarly (a, b].
• (a,∞) = {x ∈ R | a < x} is the infinite ray. Similarly define
[a,∞), (−∞, a), (−∞, a]. Note that (a,∞] is not defined since
∞ is not a natural number.

(7) ∅ denoted the empty set, which is characterized by the following
property: ∀x.x /∈ ∅. Namely, the empty set is a set with no element.
It is sometimes convenient to think of ∅ = {}.

1.4. Inclusion and the extensionality principle.

Definition 1.2. Let A,B be any sets. We say that A is included in B and
denote it by A ⊆ B if

∀x.x ∈ A ⇒ x ∈ B

In other words, if every element of A is an element of B. Using bounded
quantifiers we can say that A ⊆ B is the statement ∀x ∈ A.x ∈ B.

Theorem 1.3. For every set A, ∅ ⊆ A.

Definition 1.4. We denote by A ⊈ B if ¬(A ⊆ B), namely, if ∃x ∈ A.x /∈ B.
We denote A ⊊ B if A ⊆ B and A ̸= B.

1.5. Set equality. The extensionality principle is a basic principle (axiom)
in set theory which expresses the fact the a set is determined by its elements.

Definition 1.5. The extesionality principle is the fact that for any two sets
A,B:

A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

This means that when we wish to prove set equality A = B, we do so by
proving a double inclusion.
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1.6. Set operations.

Definition 1.6. Let A,B be sets

(1) The intersection of the sets is defined by A∩B = {x | x ∈ A∧x ∈ B}.
(2) The union of the two sets is denoted by A∪B = {x | x ∈ A∨x ∈ B}
(3) The difference of the sets is defined by A \B = {x ∈ A | x /∈ B}

In the literature, difference of sets is sometimes denoted by A−B.
(4) The complement of A inside a supset U of A is denoted by Ac = U\A.

This is conceptually different from difference since we assume that
U is some framework set and then Ac is an operation on a single set.

(5) The symmetric difference of the sets is denoted by A∆B = (A\B)∪
(B \A).

Proposition 1.7. Sets operations identities:

(1) Associativity:
(a) A ∩ (B ∩ C) = (A ∩B) ∩ C.
(b) A ∪ (B ∪ C) = (A ∪B) ∪ C.
(c) A∆(B∆C) = (A∆B)∆C.

(2) Commutativity:
(a) A ∩B = B ∩A.
(b) A ∪B = B ∪A.
(c) A∆B = B∆A.

(3) Distributivity:
(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(4) Identities of difference and De-Morgan low’s for sets:
(a) A \B = A ∩Bc.
(b) (A ∪B)c = Ac ∩Bc.
(c) (A ∩B)c = Ac ∪Bc.
(d) A \ (B ∩ C) = (A \B) ∪ (A \ C)
(e) A \ (B ∪ C) = (A \B) ∩ (A \ C).

(5) Identities of the empty set:
(a) A ∩ ∅ = ∅.
(b) A ∪ ∅ = A.
(c) A \ ∅ = A.
(d) ∅ \A = ∅.
(e) A∆∅ = A.

(6) Identities of a set and itself:
(a) A ∩A = A.
(b) A ∪A = A.
(c) A \A = ∅.
(d) A∆A = ∅.

Proposition 1.8. A = B ⇔ A∆B = ∅
Proposition 1.9. The following are equivalent:

(1) A ⊆ B
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(2) A ∩B = A
(3) A \B = ∅
(4) A ∪B = B

1.7. The power set.

Definition 1.10. Let A be any set. define the power set of A as the set f
all possible subsets of A. We denote it by

P (A) = {x | x ⊆ A}

Definition 1.11. For a finite set A, we denote be |A| the number of elements
in the set A. For example |{1, 2, 3, 18,−3}| = 5 and |(−5, 5) ∩ Z| = 9.

Theorem 1.12. Let A be a finite set then |P (A)| = 2|A|.

1.8. Ordered pairs and Cartesian product.

Definition 1.13. Let x, y be two objects, the ordered pair of x and y is
defined by ⟨x, y⟩ = {{x}, {x, y}}.

The basic property of pairs is the following property for which we omit
the proof:

Theorem 1.14 (Eauality of pairs). For every a, b, c, d

⟨a, b⟩ = ⟨c, d⟩ ⇔ a = c ∧ b = d

Definition 1.15. Let A,B be two sets. The Cartesian product of the sets
(named after René Descartes) is defined by A×B = {⟨a, b⟩ | a ∈ A,B ∈ B}

Also define the square of a set A is to be A×A.
The Real plane is defined to be the set R2.

Definition 1.16. Let us define by recursion an n-tuple. A 1-tuple is defined
by ⟨a⟩ = a. Given we have defined an n-tuple, we define n+ 1-tuples using
n-tuples and ordered pairs we have already defined.:

⟨a1, ..., an, an+1⟩ = ⟨⟨a1, ...an⟩, an+1⟩

Example 1.17. (1) ⟨a0⟩ = a0.
(2) Note that a 2-tuple is the same as an ordered pairs. Indeed, let us

denote momentarily the 2-tuple by ⟨a0, a1⟩∗, then we have

⟨a0, a1⟩∗ = ⟨⟨a0⟩, a1⟩ = ⟨a0, a1⟩
.

(3) ⟨a0, a1, a2⟩ = ⟨⟨a0, a1⟩, a2⟩ =
{{⟨a0, a1⟩}, {⟨a0, a1⟩, a2}} = {{{{a0}, {a0, a1}}}, {{{a0}, {a0, a1}}, a2}}
(4) ⟨a0, a1, a2, a3⟩ = ⟨⟨⟨a0, a1⟩, a2⟩, a3⟩

Definition 1.18.
∏n

i=1Ai = A1 ×A2 × ....×An = {⟨α1, ..., αn⟩ | αi ∈ Ai}
An =

∏n
i=1A
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2. Relations

Definition 2.1. A relation from the set A to the set B is set R ⊆ A×B.

Definition 2.2. Let R be a relation from A to B. Denote:

(1) aRb ⇔ ⟨a, b⟩ ∈ R.
(2) dom(R) = {a ∈ A | ∃b ∈ B.⟨a.b⟩ ∈ R}.
(3) Im(R) = {b ∈ B | ∃a ∈ A.⟨a, b⟩ ∈ R}.
(4) R−1 = {⟨b, a⟩ | ⟨a, b⟩ ∈ R}.
(5) IdA = {⟨a, a⟩ | a ∈ A}.
(6) If S is a relation from B to C we define:

S ◦R = {⟨a, c⟩ ∈ A× C | ∃b ∈ B.⟨a, b⟩ ∈ R ∧ ⟨b, c⟩ ∈ S}

Proposition 2.3. (1) (R−1)−1 = R.
(2) R ◦ IdA = R, IdB ◦R = R.
(3) (T ◦ S) ◦R = T ◦ (S ◦R).
(4) (S ◦R)−1 = R−1 ◦ S−1

2.1. Relations over a single set.

Definition 2.4. A relation R from A to A (i.e. R ⊆ A2) is called a relation
on the set A.

Definition 2.5 (Properties of relations and equivalence relation). Let R be
a relation on a set A. We say that:

(1) R is reflexive (on A) if: ∀a ∈ A.aRa.
(2) R is symmetric if: ∀a, b ∈ A.aRb ⇒ bRa.
(3) R is transitive if: ∀a, b, c ∈ A.(aRb) ∧ (bRc) ⇒ aRc.
(4) R is anti reflexive if: ∀x.⟨x, x⟩ /∈ R.
(5) R is weekly anti symmetric if ∀a, b ∈ A.aRb ∧ bRa ⇒ a = b.
(6) R is strongly anti symmetric if ∀a, b ∈ A.aRb ⇒ bRa
(7) R is an equivalence relation if it is reflexive, symmetric and transitive.
(8) R is an weak order if R transitive, reflexive and weakly anti sym-

metric.
(9) R is strong order if R is transitive and strongly anti symmetric.

(10) An order R (either weak or strong) is total/linear if every two ele-
ments are comparable, namely:

∀a, b ∈ A.a = b ∨ aRb ∨ bRa

2.2. quivalence relations.

Definition 2.6. Let E be an equivalence relation on a set A. The equiva-
lence class of an element a ∈ A is the set of all conditions b ∈ A such that
a is E-equivalent to b. Formally, we denote the equivalence class of a by

[a]E = {b ∈ A | aEb}

Proposition 2.7. Let E be an equivalence relation on A. Then for every
a, b ∈ A:
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(1) Either [a]E = [b]E.
(2) Or [a]E ∩ [b]E = ∅

Moreover, [a]E = [b]E if and only if aEb.

Corollary 2.8. The following are equivalent:

(1) a ̸ Eb.
(2) [a]E ̸= [b]E.
(3) [a]E ∩ [b]E = ∅.

Definition 2.9. Let E be an equivalence relation on A. The quotient set
of A by E (a.k.a “A modulo E”) is the set of all equivalence classes.1. We
denote it by2

A/E = {[a]E | a ∈ A}

Theorem 2.10. A/E is a partition of A and any partition of A is induced
from some equivalence relation.

2.3. orders.

2.4. Functions.

Definition 2.11. Let A,B be two sets. A relation R from A to B is called:

(1) Total on A, if ∀a ∈ A.∃b ∈ B.aRb.
(2) univalent, if ∀a ∈ A.∀b1, b2 ∈ B.aRb1 ∧ aRb2 ⇒ b1 = b2.
(3) A function from A to B if it is total and univalent.

Notation 2.12. If f is a function from A to B we denote it by f : A → B.
Also if f : A → B is a function, we denote f(a) = b if and only if ⟨a, b⟩ ∈ f .
So f(a) is the unique object in the set B that the function f attaches to the
element a.

Definition 2.13. A sequence of elements in the set A is a function f : N →
A. In calculus we sometime denote an = f(n) and (an)

∞
n=0 = f .

Remark 2.14. Let f : A → B be a function. The domain of f is simply A,
we denote dom(f) = A. The range of f is B and we denote Im(f) = B.
The image of f is the set img(f) = {f(a) | a ∈ A}.

Definition 2.15. Let A,B be two sets. We denote the set of all functions
from A to B by

AB = {f ∈ P (A×B) | f is a function from A to B}

Theorem 2.16 (Functions equality). Let f, g be two function. Then the
following are equivalent:

(1) dom(f) = dom(g) and ∀x ∈ dom(f).f(x) = g(x).
(2) f = g.

Here are some of the most common ways to define functions in this wat:

1Needless to say, without repetitions.
2Do not confused A/E with set difference A \ E.



MATH 504: PRELIMINARIES 7

(1) Defining a function with a formula: The definition has the form “
Define f : A → B by f(a) =(some formula)”. For example, we can
define f : R → R by f(r) = 2, this is the constant function which
for every real r returns the value 2. Another example, define g :
P (N) → P (N) by g(X) = X∪{1, 2}. Then for example g({1, 3, 4}) =
{1, 2, 3, 4} and g(N) = N.

Important: If we define f : A → B by a formula f(a) =(some
formula) we must always make sure that the functions we define are
well defined in the sense that:
(a) The function is total. Practically, this means that we should

make sure that the formula for f(a) is defined for every a ∈ A.
(b) The function is univalent. This means that for every a ∈ A, the

formula for f(a) points to a single element. (This is trivial in
most cases)

(c) for every a ∈ A the formula for f(a) returns an element in B.
So the ranged we declared when we wrote f : A → B is indeed
correct.

(2) Definition of a function by cases: Suppose we which to define a
function on a set A, and for some of the elements of A we want one
formula and for the another part of A we want to use a different
formula. We can do that the following way: “Define f : A → B by

f(a) =


(first formula) (first condition on a)

(second formula) (second condition on a)

...

Definition 2.17. Let f : A → B be a function and X ⊆ A. We define the
restriction of f to X, denote by f ↾X : X → B, and a function with domain
dom(f ↾X) = X and for every x ∈ X, (f ↾X)(x) = f(x).

Definition 2.18. Let f : A → B be a function we sat that f is:

(1) One to one/ injective: if for every a1, a2 ∈ A, if f(a1) = f(a2) then
a1 = a2.

(2) Onto/ surjective: if for every b ∈ B there is a ∈ A such that f(a) = b.

Theorem 2.19. Let f : A → B and g : B → C be two functions. Then the
composition of g in f is a function g ◦ f : A → C, with domain A and range
C such that for each a ∈ A, (g ◦ f)(a) = g(f(a)).

Moreover, the composition of 1− 1/ onto is 1− 1/onto

Definition 2.20. A function f : A → B is invertible if there is a function
g : B → A such that:

g ◦ f = idA and f ◦ g = idB

Theorem 2.21. If g1, g2 are two inverse functions of f then g1 = g2. More-
over, the inverse function of f is the relation f−1.
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Theorem 2.22. A function f : A → B is invertible if and only if it is
one-to-one and onto.

3. Equinumerability

Definition 3.1. Let A,B be any sets. We say that:

(1) |A| = |B| ”A,B have the same cardinality” if there is f : A → B
which is invertible.

(2) |A| ≤ |B| ”the cardinality of A is at most the cardinality of B” if
there is f : A → B which is injective.

(3) |A| ≠ |B| if ¬(|A| = |B|), namely if there is no invertible f : A → B.
(4) |A| < |B| if |A| ≤ |B| and |A| ≠ |B|.

Claim 3.1.1. for any sets A,B:

(1) A ⊆ B → |A| ≤ |B|.
(2) |A| = |A|.
(3) |A| = |B| → |B| = |A|.
(4) |A| = |B| ∧ |B| = |C| → |A| = |C|.
(5) |A| ≤ |B| ≤ |C| → |A| ≤ |C|.
(6) |A| = |B| < |C| → |A| < |C|.
(7) |A| < |B| = |C| → |A| < |C|

Claim 3.1.2. (AC) |A| ≤ |B| iff there is f : B → A onto.

Proposition 3.2. Let A,A′, B,B′ be sets such that |A| = |A′| and |B| =
|B′|. Then:

(1) |P (A)| = |P (A′)|.
(2) |A×B| = |A′ ×B′|.
(3) |BA| = |B′

A′|.
(4) If A,B are disjoint and A′, B′ are disjoint then |A ⊎B| = |A′ ⊎B′|.

Theorem 3.3 (Cantor-Berstein). Let A,B be sets and supose that |A| ≤
|B| ∧ |B| ≤ |A| then |A| = |B|.

Corollary 3.4. If |A| < |B| ≤ |C| or |A| ≤ |B| < |C| then |A| < |C|.

Theorem 3.5 (Cantor-Schröeder-Bernstein). If |A| ≤ |B| and |B| ≤ |A|
then |A| = |B|.

Definition 3.6. A set A is countable if |A| = |N| and we denote it by
|A| = ℵ0.

Theorem 3.7. (AC) If A is infinite then ℵ0 ≤ |A|.

Theorem 3.8. The following sets are countable: Z,Neven,Q,N×N,Nn, {X ∈
P (N) | X is finite }

Theorem 3.9. The countable union of countable sets if countable

Theorem 3.10 (Cantor’s Diagonalization Theorem). ℵ0 < |N{0, 1}|
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Definition 3.11. 2|A| = |A{0, 1}|

Theorem 3.12. |P (A)| = 2|A|

Theorem 3.13 (Cantor’s Theorem). |A| < 2|A|

Theorem 3.14. |R| = 2ℵ0, |Rn| = 2ℵ0.

Theorem 3.15. |[α, β]| = |(α, β)| = |(α,∞)|


