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Abstract
In this paper, we answer a question asked in Koepke et al. (J Symb Logic 78:85–100,
2013) regarding a Mathias criteria for Tree-Prikry forcing. Also we will investigate
Prikry forcing using various filters. For completeness and self inclusion reasons, we
will give proofs of many known theorems.
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1 Introduction

A well known result in abstract forcing theory, is that a forcing which preserves all
cofinalities, also preserves cardinals. It is natural to consider the opposite question i.e.
does every cardinal preserving forcing also preserves cofinalities?

Karel Prikry introduced his classic Prikry forcing [15], which was originally desig-
nated to give a counterexample for that statement i.e. a forcing notion, which preserves
all cardinals and changes the cofinality of a measurable cardinal κ , while adding no
new bounded subsets to κ . The definition of Prikry forcing with a normal ultrafilter
U over κ , denoted by P(U ), uses the existence of a measurable cardinal. Later it was
shown by Dodd and Jensen [7] that if there is a forcing notion which preserves all
cardinals and changes cofinalities, there is an inner model with a measurable cardinal.

The main feature of P(U ) is that a cofinal ω-sequence is added to κ , while no new
bounded subsets of κ are added. Such sequences are usually called Prikry sequences.
Mathias [14] found a criteria that ensures that an ω-sequence is a Prikry sequence (see
Theorem 3.17).

Devlin investigated a generalization of Prikry forcing over various kind of filters
[6]. One of his results is the classification of filters for which this generalized version of
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788 T. Benhamou

Prikry forcing preserves cardinals and changes the cofinality of κ to ω. An important
corollary of his work is that in order to preserve cardinals and change cofinalities,
Prikry forcing with a non–normal filter can be used. Furthermore, Devlin and Paris
proved [6] that the filters U , for which P(U ) adds no new bounded subsets to κ , are
exactly Rowbottom ultrafilters (see Definition 2.2). In this paper we will determine
which are the filters for which P(U ) has the Mathias criteria.

Theorem 3.21 P(U ) satisfies the Mathias criteria if and only if U is a Rowbottom
ultrafilter.

Another interesting research in the field of Prikry forcing, is the investigation of
intermediate ZFC models of Prikry forcing extensions. Gitik, Koepke and Kanovei,
proved that an intermediate ZFC model of Prikry forcing with a normal ultrafilter U ,
must also be a Prikry extension of the ground model for Prikry forcing with the same
U [8].

In the absence of normality, there is a variation of Prikry forcing that can be defined–
the Tree-Prikry forcing, which we denote by PT ( �U ), where �U is a tree of filters (see
Definition 4.1). In Tree-Prikry extensions, as in regular Prikry extension, cardinals are
preserved and an ω-sequence is added to κ , while no new bounded subsets are added.
Nonetheless, there are some differences. For example, the structure of intermediate
models of generic extensions of PT ( �U ) can be more complex. Gitik and the author
proved that it is possible that a Cohen generic extension is an intermediate model of
a Tree-Prikry forcing [1]. This situation is not possible in the regular Prikry forcing
(with a normal ultrafilter) according to the result of Gitik, Koepke and Kanovei.

On the other hand, it is possible that a Tree-Prikry forcing extension is very sim-
ple. Koepke, Rasch and Schlicht proved that for certain trees of ultrafilters, the model
obtained by the Tree-Prikry forcing is minimal i.e. has no proper intermediate exten-
sions [12]. In their paper, they ask for a Mathias-like criteria for Tree-Prikry forcing.
Such a criteria is given here:

Theorem 4.18 Let �U be a tree of filters in the ground model V , such that for every
a ∈ [κ]<ω, Ua is an ultrafilter which contains all the final segments. Let C ∈ [κ]ω be
a sequence in an outer model of V such that

1. sup(C) = κ .
2. For every 〈Aa | a ∈ [κ]<ω〉 ∈ V such that Aa ∈ Ua, there exists n < ω such that

for every n ≤ m < ω, C(m) ∈ AC�m.

Then C is Tree-Prikry-generic for �U.

2 Some theory of filters

The classical Prikry forcing can be performed using various types of filters. The
filter combinatorial properties changes drastically the properties of the forcing, this
discussionwill take place in the next section. This section is devoted to basic definitions
of filters and facts about them.
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Prikry forcing and tree Prikry forcing of various filters 789

Definition 2.1 A set U ⊆ P(S) is a filter over S if:

1. ∅ /∈ U , S ∈ U .
2. ∀A, B (A, B ∈ U ⇒ A ∩ B ∈ U ).
3. ∀A, B (A ∈ U ∧ A ⊆ B ⇒ B ∈ U ).

Some additional definitions of types of filters:

1. U is uniform if for every X ∈ U , |X | = |S|.
2. U isλ-complete if for everyβ < λ, 〈Aα | α < β〉 such that Aα ∈ U ,∩α<β Aα ∈ U .
3. U is trivial if there is a ∈ S such that {a} ∈ U .
4. U is an ultrafilter if ∀X ∈ P(S)(X ∈ U ∨ S\X ∈ U ).

Let us focus on filters over some regular cardinal κ . In the following definition and
throughout the paper, [A]α denotes the set of increasing sequences of elements of A
of order type α, [A]<α denotes increasing sequences of elements of A of order type
less than α. Every set of ordinals is ordered naturally by the usual order of ordinals.
We identify a set of ordinals with the sequence of its natural increasing enumeration.

Let f : A→ B be a function, denote the point-wise image of a set X ⊆ A by

f [X ] = { f (x) | x ∈ X}.

Also, define the preimage of a set Y ⊆ B by

f −1[Y ] = {x ∈ X | f (x) ∈ Y }.

Definition 2.2 Let U be a filter over κ .

1. U is normal if for any A ∈ U and any F : A → κ such that for all α ∈ A,
F(α) < α, there is A′ ∈ P(A) ∩U such that F � A′ is constant.

2. U is Rowbottom if for any A ∈ U and any F : [A]<ω → X such that |X | < κ ,
there is A′ ∈ P(A) ∩U such that for every n < ω, F � [A′]n is constant.

3. U is shrinking if for any A ∈ U and any F : [A]<ω → λ+ such that λ+ < κ ,
there is A′ ∈ P(A) ∩U such that |F[[A′]<ω]| ≤ λ.

4. U is Ramsey if for any A ∈ U and any F : [A]2 → {0, 1}, there is A′ ∈ P(A)∩U
such that F � [A′]2 is constant.
A measurable cardinal is a cardinal which carries a κ-complete non–trivial ultrafil-

ter. It is well known that the existence of a measurable cardinal is not provable from
ZFC.

Proposition 2.3 Let κ be weakly inaccessible cardinal. For every non–trivial uniform
filter U over κ:

U is normal ⇒ U is Rowbottom ⇒ U is shrinking and Ramsey.

Proof For the implication “normal⇒Rowbottom”, see [9] theorem 10.22. The impli-
cation “Rowbottom⇒ shrinking and Ramsey” follows directly from the definitions.

��
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It is known that the implications in Proposition 2.3 cannot be reversed [5].

Definition 2.4 Let U be an ultrafilter over S and f : S → X . The Rudin–Keisler
projection ofU by f is an ultrafilter in X defined by f∗(U ) = {Y ⊆ X | f −1[Y ] ∈ U }.
For ultrafilters U and W , define:

1. W ≤R−K U if ∃ f W = f∗(U ).
2. U ≡R−K W if U ≤R−K W ∧W ≤R−K U .

Proposition 2.5 LetU be an ultrafilter over I and W an ultrafilter over J . Assume that
|I | = |J |, then U ≡R−K W iff there is a bijection f : J → I such that f∗(W ) = U.

Proof Assume that f is a bijection such that f∗(W ) = U , then U ≤R−K W . f is
invertible and f −1∗ (U ) = W witnessing W ≤R−K U . For the other direction, assume
thatU ≡R−K W , then there are f : J → I and g : I → J such that f∗(W ) = U and
g∗(U ) = W . It follows that

( f ◦ g)∗(U ) = f∗(g∗(U )) = U .

Define h = f ◦ g, then h : I → I and for every X ⊆ I , X ∈ U ⇔ h[X ] ∈ U . We
claim that

{x ∈ I | h(x) = x} ∈ U .

Otherwise, since U is an ultrafilter B = {x ∈ I | h(x) �= x} ∈ U . Assume that
{bi | i < |B|} is some enumeration of B, define φ : B → {0, 1, 2} by recursion, such
that

∀i < |B| (h(bi ) ∈ B → φ(bi ) �= φ(h(bi ))).

Let φ(b0) = 0, assume that φ � {bi | i < j} is defined for some j < |B|. Also
assume that for every k < ω and i < j , either hk(bi ) /∈ B or φ(hk(bi )) is defined
(hk denoted the composition of h, k times). If there are m, k < ω and i < j such that
hm(b j ) = hk(bi ), take minimal such m. It follows that for every m ≤ n < ω, either
hn(b j ) /∈ B or φ(hn(b j )) is defined. Assume for example that φ(hm(b j )) = 2, define
for every k < m such that hk(b j ) ∈ B,

φ(hk(b j )) = k mod(2).

If there are no m, k, i such that hm(b j ) = hk(bi ), again we separate into two cases.
First, if

∃k1 < k2 < ω hk1(b j ) = hk2(b j ),

find minimal such k2 and define for m < k2 − 1 such that hm(b j ) ∈ B, φ(hm(b j )) =
m mod(2) and φ(hk2−1(b j )) = 2. Finally, if there are no k1, k2 < ω such that
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Prikry forcing and tree Prikry forcing of various filters 791

hk1(b j ) = hk2(b j ), for every k such that hk(b j ) ∈ B define φ(hk(b j )) = k mod2.
For i ∈ {0, 1, 2}, consider Bi = φ−1[{i}] ⊆ B, then

B1 � B2 � B3 = B ∈ U .

There is exactly one i ∈ {1, 2, 3} such that Bi ∈ U . Without loss of generality,
suppose that B1 ∈ U and B2 ∪ B3 /∈ U . Then h[B1] ∈ U and h[B1] ∩ B ∈ U . For
every h(b) ∈ h[B1] ∩ B, it follows by definition that φ(h(b)) �= φ(b) = 1, implying
that h(b) ∈ B2 ∪ B3. Hence

h[B1] ∩ B ⊆ B2 ∪ B3,

and so B2 ∪ B3 ∈ U , contradiction. Therefore A = {x ∈ I | h(x) = x} ∈ U and
g is 1-1 on this U -large set. Decompose I , J each into two sets I1, I2 and J1, J2
respectively, such that

|I1| = |I2| = |J1| = |J2| = |I | = |J |.

Exactly one of I1, I2 is in U and one of J1, J2 is in W . Suppose for example that
I1 ∈ U and J1 ∈ W . Since g∗(U ) = W , g−1[J1] ∈ U . Define ρ : I → J , first

ρ � (I1 ∩ A ∩ g−1[J1]) = g � (I1 ∩ A ∩ g−1[J1]).

Note that

I2 ⊆ I \ (I1 ∩ A ∩ g−1[J1]) and J2 ⊆ J \ g[I1 ∩ A ∩ g−1[J1]].

So

|I \ (I1 ∩ A ∩ g−1[J1])| = |I | = |J | = |J \ g[I1 ∩ A ∩ g−1[J1]]|.

Therefore, let ρ � (I \(I1∩A∩g−1[J1])) be any bijection with J \g[I1∩A∩g−1[J1]].
Then ρ : I → J is a bijection. Moreover, ρ∗(U ) = W since

X ∈ ρ∗(U )⇔ ρ−1(X) ∈ U ⇔ ρ−1(X) ∩ I1 ∩ A ∩ g−1[J1] ∈ U

⇔ g[ρ−1[X ] ∩ I1 ∩ A ∩ g−1[J1]] ∈ W ⇔ X ∩ g[I1 ∩ A] ∩ J1 ∈ W ⇔ X ∈ W .

��
Proposition 2.6 The following are equivalent for every non–trivial κ-complete ultra-
filter U over κ:

1. U is ≤R−K -minimal among κ-complete ultrafilters.
2. U ≡R−K W for some normal ultrafilter W.
3. U is Rowbottom.
4. U is Ramsey.
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Proof For (1) → (2), let Ult(V ,U ) be the ultrapower of V by the ultrafilter U . Let
M be the transitive collapse of Ult(V ,U ). Consider the corresponding elementary
embedding

jU : V → Ult(V ,U ) � M,

with critical point κ . Let π : κ → κ be a function representing κ in Ult(V ,U ) i.e.
[π ]U = κ . Then π∗(U ) ≤R−K U and by the minimality assumption of U , U ≡R−K

π∗(U ). To see that π∗(U ) is normal, let A ∈ π∗(U ) and f : A → κ , such that
∀α ∈ A, f (α) < α. By definition of π∗(U ), π−1[A] ∈ U and for every β ∈ π−1[A],
f (π(β)) < π(β). It follows that

{β < κ | f (π(β)) < π(β)} ∈ U .

In terms of the ultrapower, [ f ◦ π ]U < [π ]U = κ . In particular, there is γ < κ ,

[ f ◦ π ]U = γ = jU (γ ) = [cγ ]U ,

where cγ is the constant function with value γ . Therefore, D = {α < κ | f (π(α)) =
γ } ∈ U , π [D] ∈ π∗(U ) and f � π [D] is constantly γ . For (2) → (3), assume that
g : κ → κ witnesses U ≡R−K W , for some normal ultrafilter W . Let A ∈ U and
F : [A]<ω → X , where |X | < κ . Define G : [g−1[A]]<ω → [A]<ω by

G(〈α1, . . . , αn〉) = 〈g(α1), . . . , g(αn)〉.

Define F∗ : [g−1[A]]<ω → X by F∗ = F ◦ G. Since U = g∗(W ), g−1[A] ∈ W
and by normality of W , there is B ∈ W , such that for every n < ω, F∗ � [B]n is
constant. Let A′ = g[B], then A′ ∈ U . For every n < ω and �α, �β ∈ [A′]n , there are
�α′, �β ′ ∈ [B]n such that G(�α′) = �α and G( �β ′) = �β. It follows that

F(�α) = F(G(�α′)) = F∗(�α′) = F∗( �β ′) = F(G( �β ′)) = F( �β).

Hence F � [A′]n is constant. For (3) → (4), use Proposition 2.3. Finally (4) → (1),
let V be a κ-complete ultrafilter such that V ≤R−K U and ¬(V ≡R−K U ). To see
that V is trivial, consider f : κ → κ such that f∗(U ) = V . Define g : [κ]2 → {0, 1}
by

g(〈α, β〉) = 1⇔ f (α) = f (β).

There is A ∈ U such that g � [A]2 is constant. If this constant is 1, then f is constant
on A, say with value γ . In particular {γ } = f [A] ∈ V , implying V is trivial. If this
constant is 0 then f is one to one on A. As in Proposition 2.5, this implies V ≡R−K U ,
contradiction. ��

For more information about filters see [5,10,11].
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3 Basic Prikry forcing with filters

In this paper, we assume that the reader is familiar with forcing theory. We follow
similar notations to [3] and use the Jerusalem-style notation of order i.e. p ≤ q means
that “q is stronger than p”. Accordingly, let P be a forcing notion, then the weakest
condition in P is denoted by 0P. The ground model will be denoted by V . If P ∈ V
is a forcing notion, then p �P σ is the statement “p forces σ”. �P σ means 0P � σ .
P-names will be denoted with a dot accent e.g. ẋ, ḟ , γ̇ , etc. If x ∈ V , we will
abuse notation by allowing x to appear in a statements of the forcing language, where
formally the canonical name of x should have appeared. If ẋ is a name such that
�P ẋ ∈ V , then the statement p||ẋ means “∃y ∈ V such that p �P ẋ = y”. For
general information about forcing we refer the reader to [13] or [9].

Let us introduce the Prikry forcing with a filter U over a weakly inaccessible
cardinal.

Definition 3.1 LetU be a filter over a weakly inaccessible κ . The underlining set of the
Prikry forcing, denoted by P(U ), is the set of all elements of the form 〈t1, . . . , tn, A〉,
where 〈t1, . . . , tn〉 ∈ [κ]<ω, A ∈ U and min(A) > tn . For p = 〈t1, . . . , tn, A〉,
q = 〈s1, . . . , sm, B〉, define p ≤ q iff:

1. n ≤ m.
2. ∀i ≤ n, ti = si .
3. sn+1, . . . , sm ∈ A.
4. B ⊆ A.

There is an important suborder ≤∗⊆≤, defined by p ≤∗ q iff p ≤ q ∧ n = m.

Some additional notations will be used. Let p = 〈t1, . . . , tn, A〉 ∈ P(U ), define:

1. t(p) = 〈t1, . . . , tn〉, n(p) = n, A(p) = A.
2. For i ≤ n, ti (p) = ti .
3. If t, s ∈ [κ]<ω, s�t denotes the concatenation of these sequences.

For �α = 〈α1, . . . , αm〉 ∈ [A(p)]<ω, A′ ⊆ A(p) and A′ ∈ U , define:

1. p�〈�α, A′〉 = 〈t1, . . . , tm, α1, . . . , αm, A′〉.
2. p��α = p�〈�α, A(p) \ (max(�α)+ 1)〉.
Lemma 3.2 For any filter U over κ:

1. P(U ) is κ+-Knaster.
2. If U is λ-complete, then ≤∗ is λ-closed.

Proof For (1), given any 〈pi | i < κ+〉, there is E ⊆ κ+ of cardinality κ+, n∗ < ω

and t1, . . . , tn∗ such that

∀i ∈ E, n(pi ) = n∗, t(pi ) = 〈t1, . . . , tn∗〉.

Let i, j ∈ E , since U is a filter, A(pi ) ∩ A(p j ) ∈ U . It follows that

〈t1, . . . , tn∗ , A(pi ) ∩ A(p j )〉 ∈ P(U )
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is a common extension of pi and p j . For (2), let 〈pi | i < β〉 where β < λ, be an
≤∗-increasing sequence. Since U is λ-complete,

A∗ := ∩i<β A(pi ) ∈ U , 〈t(p0), A∗〉 ∈ P(U ).

The condition 〈t(p0), A∗〉 is an upper bound to the sequence 〈pi | i < β〉. ��

Example 3.3 The following simple examples suggests thatwithout further assumptions
about the filter, P(U ) might be degenerate.

1. If U is trivial, then P(U ) is atomic i.e. for all p ∈ P(U ) there is an atom p ≤ a.
Proof : Suppose U is trivial, then there is α < κ such that {α} ∈ U . It follows that
for every p ∈ P(U ), there is an atom p ≤∗ p�〈{α}〉.

2. Assume λ is measurable, U ′ is a normal ultrafilter over λ. Let λ < κ be some
weakly inaccessible cardinal, defineU = {X ⊆ κ | X ∩ λ ∈ U ′}, then �P(U ) κ is
regular.
Proof : Let p ∈ P(U ), then A(p) ∈ U . By definition of U , A(p) ∩ λ ∈ U ′ and
therefore, max(t(p)) < min(A(p)) < λ, Thus t(p) ⊆ λ. Define

pλ := p�〈A(p) ∩ λ〉 ∈ P(U ′).

Note that pλ ≥ p, hence P(U ′) is dense subset of P(U ). It follows that forcing
with P(U ) is the same as forcingwith P(U ′). By Lemma 2.3, P(U ′) is λ+-Knaster
and κ ≥ λ+, so �P(U ′) κ is regular.

In order for P(U ) to be in the spirit of Prikry, it should at least change the cofinality
of κ to ω. By the previous examples, we should at least assume that U contains all
final segments (λ, κ) := κ \ (λ + 1). Since κ is regular, such a filter must also be
non–trivial and uniform.

The next definition is of a forcing which is forcing equivalent to P(U ) and will be
easier to manage.

Definition 3.4 The underlining set of the forcing P∗(U ) is the set of all f : X → {0, 1}
such that X ⊆ κ , | f −1[{1}]| < ω and κ\X ∈ U . The order is defined by f ≤ g iff
f ⊆ g.

Lemma 3.5 Let U be a filter over κ that contains all final segments, then:

1. P∗(U ) is forcing equivalent to P(U ).
2. If U ≡R−K W then P∗(U ) � P∗(W ) in a canonical way.

Proof For (1), wewill construct a dense complete embedding i : P(U ) → P∗(U ) (for
the definition of complete embedding see for example [13] or [16]). Define i(p) = f ,
where

dom( f ) = κ\A(p), f (α) = 1⇔ α ∈ t(p).
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Since p ∈ P(U ), i(p) ∈ P∗(U ). Note that t(p) = i(p)−1[{1}] and since
min(A(p)) > max(t(p)), max(t(p))+ 1 ⊆ dom(i(p)). If p ≤ q then

dom(i(p)) = κ\A(p) ⊆ κ\A(q),

and for α ∈ dom(i(p)),

i(p)(α) = 1⇔ α ∈ t(p)⇔ α ∈ t(q) ⇔ i(q)(α) = 1,

hence i(p) ≤ i(q). Assume that i(p1), i(p2) are compatible, then f = i(p1)∪ i(p2)
must be a function and i(p1), i(p2) ≤ f . Without loss of generality, assume that
max(t(p1)) ≥ max(t(p2)), then

t(p1) ∩ (max(t(p2))+ 1) = (i(p1))
−1[{1}] ∩ (max(t(p2))+ 1)

= (i(p2))
−1[{1}] = t(p2).

Moreover,

t(p1)\t(p2) = i(p1)
−1[{1}]\i(p2)−1({1}) ⊆ κ\(κ\A(p1)) = A(p1).

Thus p�
1 〈A(p1) ∩ A(p2)〉 ∈ P(U ) is a common extension of p1 and p2. To see that

i[P(U )] is dense in P∗(U ), let f ∈ P∗(U ) and enumerate f −1[{1}] = 〈α1, . . . , αn〉.
Since U contains all final segments, A∗ := (κ \ dom( f )) ∩ (αn, κ) ∈ U . Define

p = 〈α1, . . . , αn, A
∗〉 ∈ P(U ),

then dom(i(p)) = dom( f ) ∪ αn ⊇ dom( f ) and if f (α) = 1, then α = α j for some
1 ≤ j ≤ n. By definition, i(p)(α) = 1, thus i(p) ≥ f .

For (2), let f : κ → κ be a bijection witnessing U ≡R−K W i.e. f∗(U ) = W .
Construct F : P∗(U )→ P∗(W ),

dom(F(g)) = f [dom(g)], F(g)(x) = g( f −1(x)).

Note that κ \ dom(F(g)) = f [κ \ dom(g)] ∈ W . Also F(g)−1[{1}] = f [g−1[{1}]],
therefore |F(g)−1[{1}]| < ω. Clearly, since f is invertible, F is invertible. The proof
that F is order preserving, is a straightforward verification. ��
Definition 3.6 Let G be P(U )-generic. Define the Prikry-generic sequence derived
from G by

CG =
⋃
{t(p) | p ∈ G}.

A sequence C is Prikry-generic for U , if C = CG for some generic G ⊆ P(U ).

Lemma 3.7 Let U be a filter which contains all the final segments, let G be generic
for P(U ), then:

123



796 T. Benhamou

1. sup(CG) = κ .
2. otp(CG) = ω.
3. ∀A ∈ U , CG \ A is finite.
4. Suppose that f : κ → κ witnesses U ≡R−K W. If CG is Prikry-generic for U,

then f [CG] is Prikry-generic for W.

Proof For (1), let β < κ and p ∈ P(U ). Pick β < β1 such that A(p) ∩ (β, β1) �= ∅,
and let r ∈ A(p) be such that β < r < β1, then

(β1, κ) ∈ U ⇒ A(p) ∩ (β1, κ) ∈ U ⇒ p�〈r , A(p) ∩ (β1, κ)〉 ∈ P(U ).

Therefore, p ≤ p�〈r , A(p) ∩ (β1, κ)〉 and

p�〈r , A(p) ∩ (β1, κ)〉 � sup(ĊG) > β.

By density, there is a condition qβ ∈ G such that qβ � sup(ĊG) > β. It follows that
sup(CG) > β, this is true for every β < κ , hence sup(CG) = κ . For (2), fix δ < κ ,
for every p ∈ P(U ) define pδ := p�〈[δ, κ) ∩ A(p)〉 ∈ P(U ). Then p ≤∗ pδ and

pδ � |ĊG ∩ δ| = n(p) < ω.

By density, for every δ < κ there is such pδ ∈ G, hence |CG ∩ δ| = n(pδ). It
follows that otp(CG) ≤ ω, otherwise, there is δ < κ such that otp(CG ∩ δ) = ω,
contradiction. If |CG | < ω, then α = max(CG) < κ , this contradicts (1).We conclude
that otp(CG) = ω. For (3), let A ∈ U and p ∈ P(U ). There is p∗ = p�〈A∩ A(p)〉 ∈
P(U ), such that p ≤∗ p∗. We claim that

p∗ � ĊG\max(t(p∗))+ 1 ⊆ A.

To see this, let H be generic with p∗ ∈ H and let α ∈ CH \ (max(t(p∗))+ 1). There
is r ∈ H such that r ≥ p∗ and α ∈ t(r). By definition,

α ∈ t(r)\t(p∗) ⊆ A(p∗) ⊆ A,

thus CH\max(t(p∗))+ 1 ⊆ A. By density, there is p∗ ∈ G such that

p∗ � ĊG\max(t(p∗))+ 1 ⊆ A.

Therefore, CG\A ⊆ max(t(p∗)), by (1), (2) it follows that CG\A is finite. Finally for
(4), recall the definition of F and i from Lemma 3.5. Let G be P(U )-generic, then
H = i−1[F[i[G]]] is P(W )-generic. Let α ∈ CG , find p ∈ G with α ∈ t(p), then

α ∈ t(p)⇔ i(p)(α) = 1⇔ F(i(p))( f (α)) = 1.

Since i is a dense embedding, there is q ∈ H such that i(q) ≥ F(i(p)). Therefore,
f (α) ∈ CH and f [CG] ⊆ CH . The other inclusion is symmetric, concluding f [CG] =
CH . ��
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Corollary 3.8 Let U be a filter which contains all the final segments, let G be generic
for P(U ), then c f V [G](κ) = ω.

Definition 3.9 Let C ∈ [κ]ω, define the filter generated by C ,

GC = {p ∈ P(U ) | t(p) = C ∩ (max(t(p))+ 1) ∧ C\(max(t(p))+ 1) ⊆ A(p)}.
Lemma 3.10 For every C, GC is a filter over P(U ). Moreover, if C = CG then
GC = G.

Proof Let p ∈ GC and p′ ≤ p, then

t(p) = C ∩ (max(t(p))+ 1), C\(max(t(p))+ 1) ⊆ A(p).

To see that p′ ∈ GC ,

C ∩ (max(t(p′))+ 1) = C ∩ (max(t(p))+ 1) ∩ (max(t(p′))+ 1)

= t(p) ∩ (max(t(p′))+ 1) = t(p′).

Moreover,

C \ (max(t(p′))+ 1) = [C\(max(t(p))+ 1)] ∪ [t(p)\(max(t(p′))+ 1)]
⊆ A(p) ∪ A(p′) = A(p′),

hence p′ ∈ GC . Suppose p, q ∈ GC , without loss of generality assume that n(p) ≥
n(q). Since both t(p), t(q) are initial segments of C , t(p) is an end-extension of t(q).
Since

C\(max(t(p))+ 1) ⊆ C\(max(t(q))+ 1) ⊆ A(q),

it follows that

C\(max(t(p))+ 1) ⊆ A(p) ∩ A(q) and p�〈A(p) ∩ A(q)〉 ∈ GC

Moreover, p, q ≤ p�〈A(p)∩ A(q)〉. This conclude the proof that GC is a filter. Now
suppose thatC = CG is Prikry-generic. Since generic filters are maximal among filter,
it suffices to prove that G ⊆ GC . Let p ∈ G, in the proof of Lemma 3.7 (3) we have
seen that

CG\(max(t(p))+ 1) ⊆ A(p).

Obviously, t(p) ⊆ CG ∩ (max(t(p)) + 1). For the other inclusion, let α ∈ CG ∩
(max(t(p)) + 1), there is r ∈ G such that α ∈ r and r ≥ p. Then α ∈ t(r) ∩
max(t(p))+ 1 = t(p), thus t(p) = CG ∩max(t(p))+ 1 and p ∈ GC . ��

Now we turn to the preservation of cardinals. In [6], Devlin proved that the filters
U for which P(U ) does not collapse cardinals are exactly the shrinking ultrafilters.
We include here the proof of one direction and refer the reader to [6] for the other.

123



798 T. Benhamou

Proposition 3.11 If U is shrinking, then P(U ) preserves cardinals.

Proof Since P(U ) is κ+-c.c. and κ is a limit cardinal, it suffices to show that successor
cardinals < κ are preserved. Let λ+ < κ be a successor cardinal. Let f : λ → λ+ ∈
V [G] be any increasing function and ḟ be a P(U )-name such that

�P(U ) ḟ : λ→ λ+ is increasing.

Let p ∈ P(U ), ξ < λ and �α ∈ [A(p)]<ω. There is at most one ν such that for some
p��α ≤∗ q, q � ḟ (ξ) = ν. To see this, note that any p��α ≤∗ q, q ′ are compatible
and cannot force contradictory information. Define

E�α = {ν < λ+ | ∃ξ < λ∃q ≥∗ p��α, q � ḟ (ξ) = ν}.

Thus for any �α ∈ [A(p)]<ω, |E�α| < λ+. In V , λ+ is regular the γ�α := sup(E�α) < λ+.
Define

F : [A(p)]<ω → λ+, F(�α) = γ�α.

By the shrinking property of U , there is A∗ ∈ U such that |F ′′[A∗]<ω| < λ+. Since
λ+ is regular in V ,

γ ∗ := sup(F(�α) | �α ∈ [A∗]<ω) < λ+.

Let us prove that p∗ = p�〈A∗〉 ∈ P(U ) forces that Im( ḟ ) ⊆ γ ∗. Indeed, if p∗��α ≤∗
q and q � ḟ (ξ) = ν, then ν ∈ E�α . By definition, ν < γ�α and since �α ∈ [A∗]<ω,
ν�α < γ ∗. By density,we canfind such a condition p∗ ∈ G and conclude that f = ( ḟ )G
is bounded. ��
Corollary 3.12 For any normal or Rowbottom ultrafilter U, P(U ) preserve cardinals.

Prikry’s original forcing uses a normal ultrafilter and has the other crucial property
that P(U ) does not add new bounded subsets to κ . Already in [15], Prikry noticed
that a Rowbottom ultrafilter suffices to conclude the preservation of cardinals without
adding bounded subsets to κ . What is the exact requirement of U so that P(U ) will
not add new bounded subsets to κ? First note that U must be an ultrafilter.

Proposition 3.13 If U contains all final segments and is not an ultrafilter, then U adds
a new real.

Proof Let Z ⊆ κ such that Z , κ\Z /∈ U . Let G be generic and consider the set

X = {n < ω | CG(n) ∈ Z} ∈ V [G].

We claim that X /∈ V . Otherwise, let Ẋ be a name for X and find p ∈ G such that
p � Ẋ = X . It follows that

∀i ∈ n(p) ∩ X , ti (p) ∈ Z .
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Since A(p) ∈ U ,

Z ∩ A(p), (κ\Z) ∩ A(p) �= ∅.

Let x ∈ Z∩A(p) and y ∈ (κ\Z). If n(p)+1 ∈ X , consider the condition p�〈y〉 ≥ p.
Then

p�〈y〉 � n(p)+ 1 ∈ Ẋ ∧ n(p)+ 1 /∈ Ẋ ,

contradiction. The case n(p)+ 1 ∈ κ\X is similar. ��
Now we turn to the Prikry condition, which will be proven for Rowbottom ultra-

filters. Devlin and Paris established that the Rowbottom property is also necessary
[6].

Theorem 3.14 Suppose U is a Rowbottom ultrafilter, let σ be a formula in the forcing
language and p ∈ P(U ). Then there exists p ≤∗ p∗ such that p∗ ||σ i.e. p � σ ∨ p �
¬σ .

Proof Define a function F : [A(p)]<ω → {0, 1, 2} by

F(�α) =

⎧
⎪⎨

⎪⎩

0, ∃A′, p�〈�α, A′〉 � σ

1, ∃A′, p�〈�α, A′〉 � ¬σ

2, Otherwise

The function F is well defined since for every t ∈ [κ]<ω and A1, A2 ∈ U , the
conditions 〈t, A1〉, 〈t, A2〉 are compatible and cannot force contradictory information
such as σ and ¬σ . Since U is Rowbottom, there is A∗ ∈ U such that for all n < ω,
F � [A∗]n is constant. Let p∗ = p�〈A∗〉, to see that p∗||σ , suppose otherwise, then
there are s1, s2 ∈ [A∗]<ω and X1, X2 ∈ P(A∗) ∩U such that

p∗�〈s1, X1〉 � σ, p∗�〈s2, X2〉 � ¬σ.

Extend s1, s2 to s∗1 , s∗2 if necessary, so that |s∗1 | = |s∗2 | = n∗. The extended conditions
p∗�〈s∗i , Xi 〉 decide σ the same way p∗�〈si , Xi 〉 did.We have reached a contradiction
since s∗1 , s∗2 ∈ [A′]n

∗
and F(s∗1 ) = 0, F(s∗2 ) = 1. ��

Corollary 3.15 For any normal or Rowbottom ultrafilter U and G ⊆ P(U ) generic, if
ν < κ then PV [G](ν) = PV (ν).

Proof Let X ∈ PV [G](ν) be any subset and Ẋ be a P(U )-name for it. Use
Lemma 3.2(2) and Theorem 3.14, to prove that {p ∈ P(U ) | p||Ẋ} is a dense subset
of P(U ). It follows that there is some p∗ ∈ G such that p∗||Ẋ , thus X ∈ V . ��

The next lemma is known as the strong Prikry property.
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Lemma 3.16 Let U be a normal ultrafilter and D ⊆ P(U ) dense and open. Then for
every p ∈ P(U ), there is p ≤∗ p∗ and a natural number n < ω such that

∀�α ∈ [A(p∗)]n, p∗��α ∈ D.

Proof Define F : [A(p)]<ω → {0, 1} by

F(�α) = 0⇐⇒ ∃A ∈ U , p�〈�α, A〉 ∈ D.

By Proposition 2.3, U is Rowbottom. Therefore, there is A′ ∈ P(A(p)) ∩ U such
that for every n < ω, F � [A′]n is constant. For each �α with F(�α) = 0, fix A�α ∈ U
witnessing that fact. Define

A∗ = A′ ∩ (��α∈[A′]<ω A�α) := {ν ∈ A′ | ∀�α ∈ [A′]<ω(max(�α) < ν → ν ∈ A�α)}.

By normality, A∗ ∈ U .
Since D is dense, there is n and �α ∈ [A∗]n such that for some A ∈ U p�〈�α, A〉 ∈ D.

It follows that F(�α) = 0. Let us claim that p∗ = p�〈A∗〉 and n are as wanted. Fix
�β ∈ [A∗]n , then F( �β) = F(�α) = 0. By the definition of F ,

F( �β) = 0⇒ p�〈 �β, A �β〉 ∈ D.

Note that A∗ \ (max( �β)+ 1) ⊆ A �β , hence p�〈 �β, A �β〉 ≤ p∗�〈 �β〉. Finally, since D is

open it follows that p∗�〈 �β〉 ∈ D. ��
The following theorem is due to Mathias [14].

Theorem 3.17 LetU ∈ V benormal ultrafilter over κ . SupposeC ∈ [κ]ω is a sequence
in an outer model of V , such that:

1. otp(C) = ω.
2. sup(C) = κ .
3. For every A ∈ U, there is n < ω such that for every m ≥ n, C(m) ∈ A.

Then C is Prikry-generic for U.

Proof Let us show that G = GC is generic. By Lemma 3.10 it is a filter. Let D be a
dense open subset of P(U ). For every s ∈ [κ]<ω, apply the strong Prikry property to
the condition 〈s, κ \max(s)+ 1〉 and D, find As ∈ U and ns < ω such that

∀�α ∈ [As]ns , 〈s��α, As \ (max(�α)+ 1)〉 ∈ D.

Let

A∗ = �s∈[κ]<ω As ∈ U .
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By requirement (2) of the sequence C , there is m < ω such that for every n ≥ m,
C(n) ∈ A∗. Consider the condition

p = 〈C � m + 1, A∗〉

and let n∗ = nC�m+1. By the definition of G, p�〈C(m + 1), . . . ,C(n∗)〉 ∈ G. Also

A∗ \ (C(m)+ 1) ⊆ AC�m+1,

therefore

〈C(m + 1), . . . ,C(n∗)〉 ∈ [AC�m+1]n∗ .

Since D is open, p�〈C(m + 1), . . . ,C(n∗)〉 ∈ D ∩ G. ��
Corollary 3.18 Let C, D be Prikry-generic sequences for some Rowbottom ultrafilter
U. Then infinite subsequences of C and the sequence C ∪ D are again Prikry-generic
for U.

Proof These sequences satisfy the Mathias criteria. ��
The following corollary is due to Solovay, Dehornoy in [4] and Bukovsky in [2]

independently. We follow the notations of chapter 19 in [9].

Corollary 3.19 Let U be a normal measure on κ and denote by

〈Ult (n)
U , κ(n),U (n), in,m | n < m ≤ ω〉,

the system of the first ω iterations of the iterated ultrapower by U, then:

1. 〈κ(n) | n < ω〉 is Prikry-generic for U (ω) over the model Ult (ω)
U .

2. Ult (ω)
U [〈κ(n) | n < ω〉] =⋂

n<ω Ult (n)
U .

Proof For (2), see [4] or [2]. For (1), we prove that the Mathias criteria holds for the
critical sequence 〈κ(n) | n < ω〉. Let X ∈ U (ω), by the definition of Ult (ω)

U as the
direct limit of the system

〈Ult (n)
U , in,m | n < m < ω〉,

there is n < ω and Y ∈ Ult (n)
U such that in,ω(Y ) = X . Fix any n ≤ m < ω and denote

Z = in,m(Y ). By normality of U (m), κ(m) ∈ im,m+1(Z), by elementarity,

im+1,ω(κ(m)) ∈ im+1,ω(im,m+1(Z)) = in,ω(Y ) = X .

Moreover, κ(m) < κ(m+1) = cri t(im+1,ω), then κ(m) ∈ X . ��
Corollary 3.20 If U is Rowbottom, then P(U ) has the Mathias characterization.
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Proof By Proposition 2.6, there is a normal ultrafilter W such that U ≡R−K W . Let
f : κ → κ be a bijection such that f∗(U ) = W and f −1∗ (W ) = U . Assume that C is
such that for every A ∈ U , C \ A is finite. Then for every A ∈ U , f [C \ A] is finite.
Since f∗(U ) = W , for every X ∈ W , f [C]\X is finite and therefore by Theorem 3.17,
f [C] is W -generic. By Proposition 3.7, C = f −1[ f [C]] is also generic. ��
Theorem 3.21 If P(U ) satisfies the Mathias characterization, then U is Rowbottom.

Proof Suppose U is not Rowbottom. By 2.6, there is f : [κ]2 → 2 with no homoge-
neous set from U . Let G be generic for P(U ). In V [G], define

G : [ω]2 → 2, G(n,m) = f (CG(n),CG(m)).

By Ramsey’s theorem (see [9], theorem 9.1), there is H ⊆ ω such that |H | = ω,
homogeneous for G. Consider C ′ = {CG(n) | n ∈ H}, then C ′ is homogeneous for
f . Moreover, For every A ∈ U ,

C ′\A ⊆ CG\A.

By 3.7, CG \ A is finite, hence C ′ satisfies the Mathias criteria. Let us show that C ′ is
not generic. To see this, we will prove that generic sequences cannot be homogeneous
for f . Toward a contradiction, assume that Ċ is a name for the Prikry-generic sequence
and p ∈ P(U ) is a condition such that

p � Ċ is homogeneous for f .

Since A(p) is not homogeneous for f , we can choose α, β, γ, δ ∈ A(p) such that
f (α, β) �= f (γ, δ). Assume α < β < γ < δ, other possibilities of ordering these
four ordinals are treated similarly. Extend p to the condition p∗ = p�〈α, β, γ, δ〉,
then

p∗ � α, β, γ, δ ∈ Ċ .

This is a contradiction since p∗ also forces that Ċ is homogeneous. It follows that C ′
is a counterexample for the Mathias characterization. ��

The next lemma is a topological separation property which to the best of our knowl-
edge is unknown.

Lemma 3.22 IfU is anormal ultrafilter overκ , X ∈ V [G] is a set such that X∩CG = ∅
and |X | < κ , then there is A ∈ U such that A ∩ X = ∅.
Proof It suffices to show that if ẋ is a name such that p � ẋ /∈ ĊG , then there if
p ≤∗ p∗ and A ∈ U such that p∗ � ẋ /∈ A. Once we have established that, then the
argument for a general set X is simple, let 〈ẋi | i < |X |〉 be a name for an enumeration
of X . Construct a ≤∗-increasing sequence 〈pi | i < |X |〉 and sets Ai ∈ U such that

pi � ẋi /∈ Ai .
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Since U is κ-complete, find p∗ and A∗ such that pi ≤∗ p∗ and p∗ � Ẋ ∩ A∗ = ∅.
By density, such p∗ can be found in G and so A∗ ∩ X = ∅.

Assume p � ẋ /∈ ĊG , define

f : [A(p)]<ω → {0, 1}, f (�α) = 0⇔ ∃C p�〈�α,C〉||ẋ .

Let A1 ⊆ A(p) be homogeneous and let n < ω be minimal such that f � [A1]n ≡ 0.
For �α ∈ [A1]n , fix E�α, x�α such that p�〈�α, E�α〉 � ẋ = x�α . Define

A2 = ��α∈[A1]n E�α.

Shrink A2 to A3 ∈ U andfind0 ≤ i ≤ n such that for every �α = 〈α1, . . . , αn〉 ∈ [A3]n ,
αi < x�α < αi+1 (where we define α0 = 0 and αn+1 = κ), equality cannot hold since

p��α � max(�α) ∈ ĊG .

For afixed 〈α1, . . . , αi 〉 ∈ [A3]i , define the function f〈α1,...,αi 〉 : [A3\(αi+1)]n−i → κ

by

f〈α1,...,αi 〉( �β) = x〈α1,...,αi 〉� �β.

The function f〈α1,...,αi 〉 is either constant (in case that i = n) or regressive.Bynormality
of U , there is A〈α1,...,αi 〉 ∈ U and y〈α1,...,αi 〉 so that

∀ �β ∈ [A〈α1,...,αi 〉]n−i , f〈α1,...,αi 〉( �β) = x〈α1,...,αi 〉� �β = y〈α1,...,αi 〉.

Let

A4 = �〈α1,...αi 〉∈[A3]i A〈α1,...,αi 〉 ∈ U .

It follows that for every 〈α1, . . . αi 〉 ∈ [A4]i , p�〈α1, . . . αi 〉 � ẋ = y〈α1,...αi 〉 and
αi < y〈α1,...αi 〉. We claim that

∀〈α1, . . . αi 〉 ∈ [A4]<ω, y〈α1,...αi 〉 /∈ A4\(αi + 1).

Otherwise, extend p to p�〈〈α1, . . . αi 〉, y〈α1,...αi 〉, A4〉, this condition forces y〈α1,...αi 〉 ∈
ĊG and y〈α1,...αi 〉 = ẋ but also ẋ /∈ ĊG , contradiction. Thus y〈α1,...αi 〉 /∈ A4 \ (αi + 1),
and together with the fact that y〈α1,...αi 〉 > αi , it follows that y〈α1,...αi 〉 /∈ A4.

Finally to see that p�〈A4〉 � ẋ /∈ A4, suppose otherwise, then there is q ≥
p�〈A4〉 forcing ẋ ∈ A4. Extend q if necessary so that for some 〈α1, . . . αi 〉 ∈ [A4]i ,
q ≥ p�〈α1, . . . αi 〉. It follows that

q � ẋ = y �β.

But then y �β ∈ A4, contradiction. ��
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Corollary 3.23 If c ∈ V [d], where c, d are Prikry-generic for the same U, then c \ d
is finite.

Proof Otherwise use the previous lemma and the Mathis characterization to obtain a
contradiction. ��
Corollary 3.24 For any two Prikry-generic sequences, c and d for the same U,

V [c] = V [d] ⇔ |c�d| < ω.

TheMathias criteria and the previous corollaries suggests that Prikry generic exten-
sions with a Rowbottom ultrafilter are in some sense rigid. This leads to the natural
question:

What are the intermediate ZFC models V ⊆ M ⊆ M[G]?
In [8], Gitik, Koepke and Kanovei answered this question:

Theorem 3.25 Let U be a normal ultrafilter and let G be P(U )-generic. Then for
every ZFC model V ⊆ M ⊆ V [G], there is C ′ ⊆ CG such that V [C ′] = M.

By Corollary 3.18, it follows that:

Corollary 3.26 Every intermediate model of a Prikry generic extension is again Prikry
generic.

4 Tree-Prikry forcing

The Tree-Prikry forcing is an alternative forcing to Prikry forcing that uses ultrafilters
and filters that need not be Rowbottom.

Definition 4.1 A tree of filters is a sequence �U = 〈Ua | a ∈ [κ]<ω〉, such that for
every a ∈ [κ]<ω, Ua is a filter over κ .

Definition 4.2 Let κ be a measurable cardinal and let �U = 〈Ua | a ∈ [κ]<ω〉 be a tree
of filters. A tree 〈T ,≤T 〉 is a �U -fat tree with trunk t∗ if:
1. T ⊆ [κ]<ω.
2. ∀�α, �β ∈ T , �α ≤T �β ⇔ �β ∩ (max(�α)+ 1) = �α.
3. T is ≤T -downward closed.
4. t∗ ∈ T .
5. For every t ∈ T , either t <T t∗ or SuccT (t) := {α < κ | t�α ∈ T } ∈ Ut .

We use other standard notation of trees T with trunk t∗:
1. For t ∈ T such that t∗ ≤ t , htT (t) = |t | − |t∗|.
2. Levn(T ) = {t ∈ T | htT (t) = n}.
3. For A ⊆ ω, T � A =⋃

a∈A Leva(T ).
4. For t ∈ T , (T )t = {s ∈ T | s ≥T t ∨ s <T t}. If t∗ is the trunk of T and t∗ ≤T t ,

then (T )t is a �U -fat tree with trunk t .
5. mb(T ) = {b ∈ [κ]ω | ∀n < ω, b � n ∈ T } is the set of maximal branches of T .
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Proposition 4.3 Let T be a �U-fat tree with trunk t:

1. Let 〈Aa | a ∈ [κ]<ω〉 such that Aa ∈ Ua. Then for every �U-fat tree T , there is a
�U-fat tree T ∗ ⊆ T , such that for every a ∈ T ∗, SuccT ∗(a) ⊆ Aa.

2. Assume that all the filters in �U are λ-complete. Let β < λ and 〈Tα | α < β〉 be a
sequence of �U-fat trees with the same trunk t. Then ∩α<λTα is also a �U-fat tree
with trunk t.

3. Let T be a �U-fat tree with trunk t. Suppose 〈T (s) | s ∈ T ∧ s >T t〉 is a tree of
�U-fat trees such that T (s) ⊆ (T )s has trunk s. Then we can amalgamate them to
a single �U-fat tree i.e. there is a �U-fat tree T ∗ with trunk t, such that for every
s ∈ T ∗, (T ∗)s ⊆ T (s).

Proof For (1), we define T ∗ by induction on Levn(T ∗). T ∗ has the same trunk as T .
Assume s ∈ Levn(T ∗) and define

SuccT ∗(s) = As ∩ SuccT (s) ∈ Us .

For (2), set T ′ = ∩α<λTα and let us verify that Definition 4.2 holds for T ′. For s ∈ T ′
either t is an end-extension of s and s ≤T ′ t , or t ≤Tα s for every α < β, implying
that SuccTα (s) ∈ Us . By λ-completeness of Us , SuccT ′(s) = ∩α<λSuccTα (s) ∈ Us .
Finally for (3), let us define inductively trees with the same trunk t :

. . . ⊆ T (n) ⊆ T (n−1) ⊆ . . . ⊆ T (0)

such that for every n < ω, T (n+1) � (n + 1) = T (n) � (n + 1). We start with
T (t) = T (0). Assume we have defined T (n) and let

T (n+1) = (T (n) � n + 1) ∪
⋃

s∈Levn(T (n))

(T (s) ∩ (T (n))s).

Namely, T (n+1) is the same as T (n) up to the nth level and for every s ∈ Levn(T (n)), we
shrink the tree (T (n))s to (T (n))s∩T (s). By (2), T (s)∩(T (n))s is a �U -fat treewith trunk
s, it follows thatDefinition 4.2 is satisfied for the tree T (n+1). Let T ∗ = ∩n<ωT (n), note
that the filters involved need not be σ -complete, but T (n+1) � (n+1) = T (n) � (n+1)
thus the intersection at each level is in fact of finitely many sets. It follows that T ∗ is
a �U -fat tree with trunk t and for every s ∈ T ∗,

(T ∗)s ⊆ (T (ht(s)))s ⊆ T (s).

��
Definition 4.4 Let �U = 〈Ua | a ∈ [κ]<ω〉 be a tree of filters over κ . The underlining
set of PT ( �U ) is the set of all 〈t1, . . . , tn, T 〉, where 〈t1, . . . , tn〉 is the trunk of the �U -fat
tree T . For p = 〈t1, . . . , tn, T 〉, q = 〈s1, . . . , sm, S〉, define p ≤ q iff:

1. n ≤ m.
2. 〈s1, . . . , sm〉 ∈ T (in particular 〈s1, . . . , sm〉 is an end-extension of 〈t1, . . . , tn〉).
3. S ⊆ T .
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Let p ≤∗ q iff p ≤ q ∧ n = m.

1. For �W = 〈Wα | α < κ〉, define PT ( �W ) = PT ( �U ), where Ua = Wmax(a) for all
a ∈ [κ]<ω. If theWα’s are distinct normal measures on κ this is in fact the minimal
Prikry forcing appearing in [12].

2. For �W = 〈Wn | n < ω〉 define PT ( �W ) = PT ( �U ), where Ua = U|a| for all
a ∈ [κ]<ω.

3. For a single filter W , define PT (W ) = PT ( �U ) where Ua = W for all a ∈ [κ]<ω.

We will refer to those forcings by Tree-Prikry with a tree of filters, Tree-Prikry with a
κ-sequence of filters, Tree-Prikry with an ω-sequence of filters and Tree-Prikry with
a single filter.

The following notations are useful for a condition p = 〈t1, . . . , tn, T 〉 ∈ PT ( �U ):

1. T (p) = T .
2. t(p) = 〈t1, . . . , tn〉.
3. n(p) = n.
4. For i ≤ n, ti (p) = ti .

If t(p)��α ∈ Levm(T (p)) and T ′ ⊆ T (p) is a �U -fat tree with trunk t(p)��α, define:
1. p�〈�α, T ′〉 = p�〈t(p)��α, T ′〉 := 〈t(p)��α, T ′〉.
2. p��α = p�(t(p)��α) := p�〈�α, (T (p))�α〉.
Proposition 4.5 If U is a normal ultrafilter over κ , then PT (U ) and P(U ) are forcing
equivalent.

Proof Define π : P(U )→ PT (U ) by

π(p) = 〈t(p), T (π(p))〉.

Where T (π(p)) is a tree with trunk t(p) and for every t ∈ T (p) such that t(p) ≤ t ,
SuccT (p)(t) = A \ (max(t)+ 1). It follows that π(p) ∈ PT (U ). To see that Im(π) is
dense in PT (U ), fix p ∈ PT (U ), define the set

A = �t(p)≤t∈T (p)SuccT (p)(t).

By normality of U , A ∈ U . Consider the condition q = 〈t(p), A〉, then q ∈ P(U ).
Moreover T (π(q)) ⊆ T (p). Indeed, let t(p)�〈α1, . . . , αn〉 ∈ T (π(q)), then for every
1 ≤ i < n,

αi+1 ∈ A \ (αi + 1) ⊆ SuccT (p)(t(p)
�〈α1, . . . , αi 〉).

In particular, t(p)�〈α1, . . . , αn〉 ∈ T (p). It follows that π(q) ≥ p and so Im(π) is
dense in PT (U ). π is order preserving, let p, q ∈ P(U ) such that p ≤ q, then:

1. t(q) is an end-extension of t(p).
2. t(q) \ t(p) ∈ [A(p)]<ω.
3. A(q) ⊆ A(p).
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It follows that T (π(q)) ⊆ T (π(p)) and t(q) ∈ T (π(p)), therefore π(p) ≤ π(q).
Assume that p, q ∈ P(U ) and π(p), π(q) have a common extension r ∈ PT (U ).
By definition of the order, t(r) is an end-extension of t(p), t(p). Moreover, since
t(r) ∈ T (π(p)) ∩ T (π(q)), t(r) \ t(q) ∈ [A(q)]<ω and t(r) \ t(p) ∈ [A(p)]<ω and
the condition

〈t(r), A(p) ∩ A(q)\(max(t(r))+ 1)〉 ∈ P(U )

is a common extension of p, q. ��
Lemma 4.6 For any tree of filters �U = 〈Ua | a ∈ [κ]<ω〉:
1. PT ( �U ) is κ+-Knaster.
2. If all the filters in �U are λ-complete, then the order ≤∗ is λ-closed.

Proof The proof is completely analogous to 3.2. ��
To avoid similar pathologies to those of Example 3.3, assume that all the filters

in �U contains all the final segments. The next theorem is a variation the Rowbottom
property for a tree of filters.

Theorem 4.7 Let T be a �U-fat tree with trunk t and F : T → X a function such that
for every a ∈ [κ]<ω, Ua is a |X |+-complete ultrafilter. Then there exists a �U-fat tree
T ′ ⊆ T with the same trunk, such that for any n < ω, F � Levn(T ′) is constant.
Proof By induction on n < ω, we will prove that for every such T and F , we can find
T ′ ⊆ T such that for every m ≤ n, F � Levm(T ′) is constant. For n = 1, let t∗ be the
trunk of T and consider F � SuccT (t∗). SinceUt∗ is a |X |+-complete ultrafilter, there
is A ∈ Ut∗ such that F � A is constant. Shrink the set SuccT (t∗) to A and denote the
new tree by T (1), this tree is as wanted. Assume the theorem hold up to n and let T
and F be as before. By the induction hypothesis, there is T (n) ⊆ T such that for every
m ≤ n, F � Levm(T (n)) is constant. For t ∈ Levn(T (n)), define

Ft : SuccT (n) (t)→ X , Ft (α) = F(t�〈α〉).

There is At ∈ Ut such that Ft � At is constant with value γt . Define the tree T ′,

T ′ = (T (n) � (n + 1)) ∪
⋃

t∈Levn(T (n)), α∈At

(T (n))t�α.

Namely, T ′ is the same as T (n) up to the nth level, then we shrink the tree so that the
sets At constitute Levn+1(T ′). Consider the function G : T ′ → X defined by

G(s) =
{
0, s ∈ T ′ � ω \ {n}
γs, s ∈ Levn(T ′)

By the induction hypothesis there is T (n+1) ⊆ T ′ ⊆ T (n) and γ ∗ such that

G � Levn(T (n+1)) ≡ γ ∗.
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We claim that F � Levn+1(T (n+1)) ≡ γ ∗. To see this, fix t�α ∈ Levn+1(T (n+1)),
then α ∈ At and t ∈ Levn(T (n+1)). Thus

F(t�α) = Ft (α) = γα = G(t) = γ ∗.

This concludes the induction. Let T ∗ =⋂
n<ω T (n), note that each level is an intersec-

tion of finitely many sets. Therefore, T ∗ is a �U -fat tree and ∀n < ω, F � Levn(T ∗)
is constant. ��

Next we prove the Prikry condition.

Theorem 4.8 Assume that every filter in �U is an ultrafilter. Let σ be a formula in the
forcing language and p ∈ PT ( �U ). Then there exists p ≤∗ p∗ such that p∗ ||σ .
Proof Let p ∈ PT ( �U ). Find p ≤∗ p∗ so that for every t ∈ T (p∗),

p∗�〈t〉||σ ⇔ ∃q ≥∗ p∗�〈t〉 q||σ.

To find such p∗, let t ∈ T (p). If ∃q ≥∗ p∗�〈t〉 such that q||σ , set S(q) = T (q),
otherwise, set S(t) = (T )t . By Proposition 4.3, amalgamate 〈S(t) | t ∈ T (p)〉 to a
single tree T ∗ ⊂ T (p) with the same trunk t(p). Then the condition p∗ = 〈t(p), T ∗〉
is as wanted. Next, define a function F : T (p) → {0, 1, 2} by

F(t) =

⎧
⎪⎨

⎪⎩

0, p�〈t〉 � σ

1, p�〈t〉 � ¬σ

2, Otherwise

By Theorem 4.7, there is T ′ homogeneous for F . Find minimal n < ω such that
F � Levn(T ′) is constantly 0 or 1, suppose for example it is constantly 0. Toward a
contradiction, suppose that n > 0, pick any t ∈ Levn−1(T ′). We claim that F(t) = 0,
thiswill contradict theminimality of n. Otherwise, there is p�t ≤ q such that q � ¬σ .
If necessary, extend q so that p�〈t�α〉 ≤ q, for some α ∈ sucT ′(t). We have reached
a contradiction since

p�〈t�α〉 � σ.

Thus n = 0, which means that p�〈T ′〉 || σ . ��
Corollary 4.9 Let ν < κ and assume that �U is a tree of filters such that for every
a ∈ [κ]<ω, Ua is ν+-complete ultrafilter and let G ⊆ PT ( �U ) be generic. Then
PV [G](ν) = PV (ν).

Proof Let X ∈ PV [G](ν) and let Ẋ be a PT ( �U )-name for it. Use Theorem 4.8 and
Lemma 4.6(2) to prove that the set of all conditions p ∈ PT ( �U ) such that p||Ẋ is
dense. Hence there is p∗ ∈ G such that p∗||Ẋ and so X ∈ V . ��
Corollary 4.10 If for every a ∈ [κ]<ω, Ua is a κ-complete ultrafilter, then PT ( �U )

preserves cardinals.
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Note that in the last two theorems we do not need every filter to be a κ-complete
ultrafilter, but that for every �U -fat tree T there is T ′ ⊆ T such that for every a ∈ T ′,
Ua is a κ-complete ultrafilter. We will prove that this requirement is necessary.

Proposition 4.11 Let �U be a tree of filters.

1. For every λ < κ , if there exists a∗ ∈ [κ]<ω such that the set

A := {a ∈ [κ]<ω | Ua is λ− complete and not λ+ − complete}

is dense above a∗ i.e. for every �U-fat tree T with trunk above a∗, there is t ≥ a∗
such that t ∈ A ∩ T . Then there is a generic extension of PT ( �U ) which adds a
new ω-sequence to λ.

2. If there exists a∗ ∈ [κ]<ω such that the set

B := {a ∈ [κ]<ω | Ua is not an ultrafilter}

is dense above a∗, there is a generic extension of PT ( �U ) which adds a new real.

Proof For (1), fix p such that t(p) = a∗ and let G be generic with p ∈ G. For every
a ∈ A, fix 〈Xi,a | i < λ〉 ⊆ Ua such that

∀i < j < λ, Xi,a ⊇ X j,a and ∩i<λ Xi,a /∈ Ua .

Define in V [G], g : ω → λ by

g(n) = min(i < λ | CG(n) /∈ Xi,CG�n)

and ifCG(n) ∈ Xi,CG�n for every i < λ, define g(n) = 0.Claim that g /∈ V , otherwise,
let p ≤ q ∈ G be such that q � ġ = g. By density of A, there is t ∈ A ∩ T (q) above
a∗. Let

g(|t | + 1) = γ ∗ < λ,

then Xγ ∗,t ∈ Ut . Find the minimal j > γ ∗ such that SuccT (q)(t) ∩ Xγ ∗,t\X j,t �= ∅.
There is such j since

SuccT (q)(t) ∩ Xγ ∗,t ∈ Ut and ∩i<λ Xi,t /∈ Ut .

Pick x ∈ SuccT (q)(t) ∩ Xγ ∗,t\X j,t and extend q to q∗ = q�〈t, x〉. Then

q∗ � ġ(|t | + 1) = g(|t | + 1) = γ ∗ and q∗ � γ ∗ < ġ(|t | + 1) = j,

contradiction. For (2), let a ∈ B and Xa such that Xa, κ\Xa /∈ Ua . Define the real

r = {n < ω | CG(n) ∈ XCG�n}.

The proof that r /∈ V is completely analogous to the one given in 3.13 for Prikry
forcing. ��

123



810 T. Benhamou

Definition 4.12 LetG be PT ( �U )-generic. DefineCG =⋃{t(p) | p ∈ G}. A sequence
C ∈ [κ]ω is Tree-Prikry-generic for �U , if C = CG for some generic G ⊆ PT ( �U ).

Lemma 4.13 Let �U be a tree of filters such that for every a ∈ [κ]<ω, Ua contains all
the final segments. Suppose G is a generic filter for PT ( �U ), then:

1. otp(CG) = ω.
2. sup(CG) = κ .
3. For every 〈Aa | a ∈ [κ]<ω〉 ∈ V such that Aa ∈ Ua, there exists n < ω such that

for every m ≥ n, CG(m) ∈ ACG�m.
4. For every 〈T (a) | a ∈ [κ]<ω〉 ∈ V such that T (a) is a tree with trunk a, there

exists n < ω such that for every m ≥ n, CG ∈ mb(T (CG � m)).

Proof For (1), it suffices to prove that CG is infinite and ∀ν < κ , ν∩CG is finite. This
follows by the density of the sets:

Dn = {p ∈ PT ( �U ) | n(p) ≥ n}, for n < ω.

Eδ = {p ∈ PT ( �U ) | min(SuccT (p)(t(p))) > δ}, for δ < κ.

(2) follows by the density of the sets:

Fδ = {p ∈ PT ( �U ) | max(t(p)) > δ}, for δ < κ.

For (3), let p ∈ PT ( �U ). By Proposition 4.3 (1), we can shrink T (p) to T ∗ so that for
every s ∈ T ∗, SuccT ∗(s) ⊆ As . Let p ≤∗ p∗ defined by

p∗ = p�〈T ∗〉.

By density, find such p∗ ∈ G. It follows that for every m > n(p∗), CG(m) ∈ ACG�m .
Finally for (4), let p ∈ PT ( �U ). By Proposition 4.3 (3), it is possible to amalgamate
the trees T (a) to a tree T ∗, so that

∀s ∈ T ∗, (T ∗)s ⊆ T (s).

Let p∗ = p�〈T ∗〉 ≥∗ p. By density, find such p∗ ∈ G. Letm > n(p∗) and let k < ω.
There is r ∈ G such that |t(r)| > k and p∗�〈CG(n + 1), . . . ,CG(m − 1)〉 ≤ r , in
particular,

CG � |t(r)| = t(r) ∈ T (CG � m).

Since T (CG � m) is downward closed, CG � k ∈ T (p∗). Hence ∀k < ω, CG � k ∈
T (CG � m) and by definition of the set of maximal branches,

CG ∈ mb(T (CG � m)).

��
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Corollary 4.14 Let �U be a tree of filters such that for every a ∈ [κ]<ω, Ua contains all
the final segments. Suppose G is a generic filter for PT ( �U ), then c f V [G](κ) = ω.

Definition 4.15 Let C ∈ [κ]ω, define the filter generated by C ,

GC = {p ∈ PT ( �U ) | p(t) = C ∩ (max(p(t))+ 1) ∧ C ∈ mb(T (p))}.

Lemma 4.16 For every C, GC is a filter. If C = CG then GC = G and G∗C = G.

Proof Analogous to Lemma 3.10. ��
Next we prove the strong Prikry property for Tree-Prikry forcing.

Lemma 4.17 Let �U be a tree of filters such that for every a ∈ [κ]<ω, Ua is an ultrafilter
which contains all the final segments. Then for every p ∈ PT ( �U ), there is p∗ ≥∗ p
and a natural number n < ω such that for every t ∈ Levn(T (p∗)), p∗�t ∈ D.

Proof Define F : T (p)→ {0, 1} by

F(t) = 0 ⇔ ∃T ′ ⊆ (T (p))t p
�〈t, T ′〉 ∈ D.

By 4.7, there is a �U -fat tree T ′ ⊆ T (p) with trunk t(p), such that F � Levn(T ′) is
constant for every n < ω. Let t ∈ T ′, if F(t) = 0 set S(t) to be some witnessing tree
for it, otherwise let S(t) = (T ′)t . By 4.3 (3), find T ′′ such that

∀t ∈ T ′′ (T ′′)t ⊆ S(t).

Define T ∗ = T ′ ∩ T ′′. Since D is dense, there is s ∈ T ∗ such that for some S,
p�〈s, S〉 ∈ D, hence F(s) = 0. Let us claim that p∗ = p�〈T ∗〉 and ht(s) are
as wanted. Take any s′ ∈ Levht(s)(T ∗), by homogeneity of T ′, F(s) = F(s′) = 0.
Therefore, p�〈s′, T (s′)〉 ∈ D. The tree T ∗ has the property that (T ∗)s′ ⊆ T (s′), thus
p�〈s′, T (s′)〉 ≤ p∗�〈s′〉. Finally, p∗�〈s′〉 ∈ D since D is open. ��

The following is a Mathias-like characterization for Tree-Prikry forcing.

Theorem 4.18 Let �U ∈ V be a tree of filters such that for every a ∈ [κ]<ω, Ua is an
ultrafilter which contains all the final segments. Let C ∈ [κ]ω be a sequence in an
outer model of V such that:

1. sup(C) = κ .
2. For every 〈T (a) | a ∈ [κ]<ω〉 ∈ V such that T (a) is a �U-fat tree with trunk a,

there exists n < ω such that for every m ≥ n, C ∈ mb(T (C � m)).

Then C is Tree-Prikry-generic for �U.

Proof Let G = GC be the filter generated by C as defined in 4.15. Let D be dense and
open, for every s ∈ [κ]<ω, apply the strong Prikry property to D and the condition
〈s, R(s)〉, where R(s) is the tree with trunk s and for every s ≤ t ∈ R(s),

SuccR(s)(t) = κ \ (max(t)+ 1).
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Find a �U -fat tree T (s) ⊆ R(s) and ns < ω such that

∀t ∈ Levns (T (s)) 〈t, (T (s))t 〉 ∈ D.

We define 〈S(a) | a ∈ [κ]<ω〉 by induction on |a|. Let S(〈〉) = T (〈〉). Assume that
S(a) is defined and let α ∈ κ\max(a)+ 1. If α ∈ SuccS(a)(a), define

S(a�〈α〉) = (S(a))a�〈α〉 ∩ T (a�〈α〉),

otherwise, set S(a�〈α〉) = T (a�〈α〉). By requirement (2) of the sequence C ,

∃N < ω ∀n ≥ N C ∈ mb(S(C � n)).

Consider the condition p = 〈C � N , S(C � N )〉 ∈ PT ( �U ) and let n∗ = nC�N . Then

C � n∗ ∈ Levn∗(S(C � N )) ⊆ Levn∗(T (C � N )).

We claim that p∗ = 〈C � n∗, S(C � n∗)〉 ∈ D ∩ G. Since n∗ ≥ N , C ∈ mb(S(C �
n∗)) and by definition of G, p∗ ∈ G. To see that p∗ ∈ D, note that for n ≥ N ,
C � n ∈ S(C � N ) and by the recursive definition of S,

S(C � n) = (S(C � N ))C�n ∩ T (C � n) ⊆ (T (C � N ))C�n .

Particularly, for n∗

D ! 〈C � n∗, (T (C � N ))C�n∗〉 ≤∗ 〈C � n∗, S(C � n∗)〉 = p∗

Since D is open, p∗ ∈ D. ��
Corollary 4.19 Let �U ∈ V be a tree of filters such that for every a ∈ [κ]<ω, Ua is an
ultrafilter which contains all the final segments. Let C ∈ [κ]ω be a sequence in an
outer model of V such that:

1. sup(C) = κ .
2. For every 〈Aa | a ∈ [κ]<ω〉 ∈ V such that Aa ∈ Ua, there exists n < ω such that

for every m ≥ n, C(m) ∈ AC�m.

Then C is Tree-Prikry-generic for �U.

Proof Prove condition (2) of Theorem 4.18. Let 〈T (a) | a ∈ [κ]<ω〉 be a tree of trees
and define sets Aa for a ∈ [κ]<ω. Define A〈〉 = SuccT (〈〉) and let

Aa =
⋂

j≤|a|, a∈T (a� j)
SuccT (a� j)(a) ∈ Ua .

By propery (2) of C , there is N such that for every n ≥ N , C(n) ∈ AC�n . Fix
N ≤ k < ω, let us prove that C ∈ mb(T (C � k)). By induction on m ≥ k, prove
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that C � m ∈ T (C � k). For m = k this is just by the fact that C � k is the trunk of
T (C � k). Assume that C � m ∈ T (C � k), then

SuccT (C�k)(C � m) ⊇ AC�m .

Moreover, C(m) ∈ AC�m implying that C(m) ∈ SuccT (C�k)(C � m). Finally, we
conclude that C � (m + 1) ∈ T (C � k) and the induction step follows. ��

Next we translate this characterization to Tree-Prikry with a κ-sequence, Tree-
Prikry with an ω-sequence and Tree-Prikry with a single ultrafilter. This criteria was
asked for in [12].

Corollary 4.20 Let �W = 〈Wα | α < κ〉 ∈ V beaκ-sequenceofκ-complete ultrafilters.
Let C ∈ [κ]ω be a sequence in an outer model of V , then C is Tree-Prikry-generic for
�W iff:

1. sup(C) = κ .
2. For every 〈Aα | a < κ〉 ∈ V such that Aα ∈ Wα , there exists n such that for every

m ≥ n, C(m) ∈ AC(m−1).

Proof Suppose C satisfies

(∗) ∀〈Aα | a < κ〉 ∃n ∀m ≥ n C(m) ∈ AC(m−1).

Let us show the criteria in 4.19 holds. Fix 〈Aa | a ∈ [κ]<ω〉 such that Aa ∈ Ua , define

Aα =
⋂

a∈[α]<ω

Aa�〈α〉.

Since Wα is κ-complete, Aα ∈ Wα . By (∗), there is m such that for every n > m,

C(n) ∈ AC(n−1) ⊆ AC�n .

��
Corollary 4.21 Let �W = 〈Wn | n < ω〉 ∈ V be an ω-sequence of κ-complete ultra-
filters and let C ∈ [κ]ω be a sequence in an outer model of V . For every n < ω, fix
πn : κ → κ such that [πn]Wn = κ . Then C is Tree-Prikry-generic for �W iff:

1. sup(C) = κ .
2. For every 〈An | n < ω〉 ∈ V such that An ∈ Un, there exists n such that for

m ≥ n, C(m) ∈ Am.
3. There exists n > 0 such that for every m ≥ n, πm(C(m)) > C(m − 1).

Proof Suppose CG is generic for PT ( �W ). Let p ∈ PT ( �W ), for every t ∈ T (p) define

Xt = {ν < κ | π|t |(ν) > max(t)}.
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To see that Xt ∈ W|t |, note that in the ultrapower by W|t |,

max(t) = jW|t |(max(t)) < κ = [π|t |]W|t | .

Shrink SuccT (p)(t) to SuccT (p)(t) ∩ Xt . By density, find p∗ ∈ G such that for every
t ∈ T (p∗), SuccT (p∗)(t) ⊆ Xt . Then CG ∈ mb(T (p∗)) and

∀m > n(p∗) πm(CG(m)) > CG(m − 1).

Note here that |〈CG(0), . . . ,CG(m − 1)〉| = m and so we used πm .
For the other direction, we prove condition (2) in 4.19, let 〈Aa | a ∈ [κ]<ω〉 ∈ V

such that Aa ∈ W|a|. Define A0 = A〈〉 ∈ W0 and

An = �∗a∈[κ]n Aa := {ν < κ | ∀a ∈ [πn(ν)]n ν ∈ Aa}.

To see that An ∈ Wn , note that in the ultrapower by Wn , κ = [πn]Wn and

∀a ∈ [[πn]Wn ]n, [id]Wn ∈ jWn (Aa).

By Lós theorem An ∈ Wn . There is n < ω such that for every m ≥ n,

πm(C(m)) > C(m − 1) and C(m) ∈ Am .

Since C � m = 〈C(0), . . . ,C(m − 1)〉 ∈ [πm(C(m))]m , C(m) ∈ AC�m . ��
Corollary 4.22 Let U ∈ V be a κ-complete ultrafilter and let C ∈ [κ]ω be a sequence
in an outer model of V . Fix π : κ → κ such that [π ]U = κ . Then C is Tree-Prikry-
generic for U iff:

1. sup(C) = κ .
2. For every A ∈ U, there exists n such that for every m ≥ n, C(m) ∈ A.
3. There exists n such that for every m ≥ n, π(C(m)) > C(m − 1).

Proof To prove condition (2) of Corollary 4.21, given 〈An | n < ω〉 ∈ V such that
An ∈ U , apply condition (2) to the set A = ∩a<ωAn ∈ U . ��

In Corollaries 4.21 and 4.22, we required that the sequence satisfies πn−1(C(n)) >

C(n−1), it is crucialwhenwediagonally intersect sets of the same level. This condition
emphasis the difference between Prikry-generic sequences and Tree-Prikry-generic
sequences.More precisely, the notion ofTree-Prikry-generic sequences generalizes the
notion of regular Prikry-generic sequences since if U is normal, the new requirement
is satisfied automatically as [id]U = κ .

We wish to generalize the Solovay observation that the critical sequence of the
iterated ultrapower by a normal measureU is Prikry-generic for P( jω(U )) above Mω.
Let �U ∈ V be a tree of κ-complete ultrafilters over κ , denote V = M0. Fix the first
measure in �U and its embedding i.e.

U0 := U〈〉, κ0 := κ, �U0 := �U , j0 : V → Ult(V ,U0).
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Set M1 := Ult(V ,U0), κ1 := j0(κ), �U1 := j0( �U ). Consider δ0 := [id]U0 , take the
ultapower by

U1 := ( �U1)〈δ0〉, j1 : M1 → Ult(M1,U1).

Once again, denote M2 := Ult(M1,U1), κ2 := j1(κ1), �U2 := j1( �U1). Generally,
assume we have defined

Mn, �Un, κn, Un = ( �Un)〈δ0,...δn−1〉, jn : Mn → Ult(Mn,Un).

Set

δn := [id]Un , Mn+1 := Ult(Mn,Un), κn+1 := jn(κn),

�Un+1 := jn( �Un), Un+1 = ( �Un+1)〈δ0,...,δn〉.

For n < m, let

jn,m = jm−1 ◦ . . . ◦ jn : Mn → Mm,

and if n = m let jn,n = id. The system of models 〈Mn, jn,m | n < m < ω〉 has a
direct limit denoted by Mω and direct limit embeddings

jn,ω : Mn → Mω, jn,ω = jm,ω ◦ jn,m,

such that Mω = ⋃
n<ω jn,ω[Mn]. The model Mω is well founded and we identify it

with its transitive collapse.

Theorem 4.23 Let �U be a tree of κ-complete ultrafilters. The sequence 〈δn | n < ω〉
is Tree-Prikry-generic over Mω for �Uω := j0,ω( �U ).

Proof We verify that the Mathias criteria holds for the sequence 〈δn | n < ω〉. Let

�A = 〈Aa | a ∈ [κω]<ω〉 ∈ Mω, Aa ∈ ( �Uω)a .

Then there is n < ω and x ∈ Mn such that jn,ω(x) = �A. By elementarity, x is also a
tree of filters, x = 〈Ba | a ∈ [κn]<ω〉. We claim that for m ≥ n, δm ∈ A〈δ0,...,δm−1〉.
Let Y = jn,m(x), then

Y〈δ0,...,δm−1〉 ∈ ( �Um)〈δ0,...,δm−1〉 = Um .

It follows that δm = [id]Um ∈ jm,m+1(Yδ0,...,δm−1), thus by elementarity and the fact
that for i < m, δi < κm = cri t( jm,ω)

δm = jm+1,ω(δm) ∈ jm+1,ω( jm,m+1(Yδ0,...,δm−1)).
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Hence

δm ∈ jm,ω(Y )δ0,...,δm−1 = jn,ω(x)δ0,...,δm−1 = Aδ0,...,δm−1 .

��
One major difference between Tree-Prikry forcing and the Prikry forcing is the

structure of intermediate models. In the case of Prikry forcing with we always have
non–trivial intermidiate extensions, it is not always the case for Tree-Prikry forcing.
In [12], it is proven that in the case of a κ-sequence of distinct normal measures, or any
κ-sequence of measures that can be separated, we do not have non–trivial intermediate
extensions.

Theorem 4.24 Let �U = 〈Ui | i < κ〉 be a κ-sequence of distinct normal ultrafilters.
Let G ⊆ PT ( �U ) be generic over V , then every A ∈ V [G] either A ∈ V or V [A] =
V [G].

5 Questions

To the best of our knowledge the following questions are open:

Question 5.1 Is there a combinatorical characterization of all �U tree of filters for
which PT ( �U ) preserve cardinals?

Question 5.2 Is there a combinatorical characterization of all �U tree of filters for
which PT ( �U ) has the mathias characterization? does the answer changes according
to κ-sequence/ω-sequence/single ultrafilter?

Question 5.3 What are all intermediate models of PT ( �U )?

Question 5.4 Let U be a non–normal ultrafilter, how does the intermediate models of
P(U ) looks like?
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