Filters and Ultrafilters- a mathematical approach to smallness and largeness

Tom Benhamou

Department of Mathematics Departement at Rutgers University

This research was supported by the National Science Foundation under Grant No. DMS-2246703

January 25, 2024

A D M A B M A B M

Examples

Classical notions of and "large":

- A large enough number where is the cut-off?
- Infinite sets.
- Surge cardinality (for example, uncountable sets).
- Sevents of probability one/positive.
- Full Lebesgue measure.

Classical notions of and "small":

- a small number.
- Inite sets.
- sets of small cardinality.
- events of probability zero.
- **()** Lebesgue measure 0.

You can clearly see that there is some Duality here between small and large.

Q. Is there a single definition that treats all these notions?

Image: A math a math

Filters

Definition 1

Let A be any set. A family of sets $U \subseteq P(A)$ is called a *filter* over A if:

- 1. $A \in U$, $\emptyset \notin U$.
- 2. *U* is closed under intersections: for all $X, Y \in U, X \cap Y \in U$.
- 3. *U* is upward closed: for all $X \in U$ an for every $X \subseteq Y \subseteq A$, $Y \in U$.

Important examples of filters:

- The Freche filter on any infinite cardinal κ is $\mathcal{FR}_{\kappa} = \{X \subseteq \kappa \mid |\kappa \setminus X| < \kappa\}.$
- Given a probability space $(\Omega, \mathbb{P}, \Sigma)$, let $\mathcal{F}_0 = \{X \in \Sigma \mid \mathbb{P}(X) = 1\}$.
- The filter of measurable sets with null complements $\mathfrak{L} = \{X \subseteq \mathbb{R} \mid \mu_{Leb}(\mathbb{R} \setminus X) = 0\}.$
- Given a family of non-empty sets B ⊆ P(A), closed under finite intersection,
 F_B = {X ⊆ A | ∃b ∈ B, b ⊆ X} is a called, the filter generated by X. A similar construction works if B only has the finite intersection property.

We think of sets in a filter as large sets, and a fixed filter is a fixed notion of largeness.

Ideals

The dual notion of a filter, which corresponds to smallness is the notion of ideals:

Definition 2

- Let A be any set. A family of sets $\mathcal{I} \subseteq P(A)$ is called a *ideal* over A if:
 - 1. $\emptyset \in U, A \notin U$.
 - 2. U is closed under unions.
 - 3. U is downward closed to inclusion.
 - The Freche ideal on any infinite cardinal κ is $\mathcal{I}_{\kappa} = \{X \subseteq \kappa \mid |X| < \kappa\}$.
 - Given a probability space $(\Omega, \mathbb{P}, \Sigma)$, let $\mathcal{I}_0 = \{X \in \Sigma \mid \mathbb{P}(X) = 0\}$.
 - The filter of measurable sets with null complements $\mathfrak{L} = \{X \subseteq \mathbb{R} \mid \mu_{Leb}(X) = 0\}.$

• Given a filter \mathcal{F} over A, the *dual ideal*, denoted by $\mathcal{F}^* = \{A \setminus X \mid X \in \mathcal{F}\}.$

This is a specific case of the other notion of ideals from algebra (where product is intersection and addition is union).

イロト イヨト イヨト イヨト

Ultrafilters

Given a filter \mathcal{F} , we have:

- \bullet Sets in ${\cal F}$ are large.
- Sets in \mathcal{F}^* are small.

• What about sets which are neither in \mathcal{F} nor in \mathcal{F}^* ? For example, if $\mathcal{F} = \mathcal{FR}_{\omega}$ the sets $X \subseteq \omega$ such that $|X| = |\omega \setminus X| = \aleph_0$.

Given an ideal *I*, a set $X \notin I$ is called positive.

Definition 3

A filter U over A is called an *ultrafilter* if:

4. for every $X \subseteq A$, either $X \in U$ or $A \setminus X \in U$.

So an ultrafilter U determines whether each set is small or large. In other words, all positive sets are large.

Example 4

Given $a \in A$, define $U_a = \{X \subseteq A \mid a \in X\}$. Then U_a is called a principal ideal.

Q. Are there any non-principal ultrafilters?

イロト イヨト イヨト イヨ

Exercise 1

If U is an ultrafilter over a finite set X then U is principal.

Theorem 5 (The ultrafilter lemma)

Assume AC. Then every filter can be extended to an ultrafilter. Namely each filter \mathcal{F} is a subset of some ultrafilter U.

Applying the previous Theorem to $\mathcal{FR}_{\omega} = \{X \subseteq \omega \mid |\omega \setminus X| < \omega\}$, we obtain an ultrafilter U. It cannot be principle, since if $\{a\} \in U$, then so is $\omega \setminus \{a\} \in \mathcal{FR}_{\omega} \subseteq U$, but then $\emptyset \in U$, contradiction. Ultrafilters are highly non-constructive sets. Every $X \in P(\omega)$ can be identified with a real number $0.f_X(0)f_X(1)f_X(2)... \in [0, 1]$ where f_X is the indicator function. Under this identification, an ultrafilter can be identified with a subset of [0, 1].

Theorem 6

If U is a non-principle ultrafilter over ω , then U is not Lebesgue measurable when identified as a subset of [0, 1].

Part 2: Applications

・ロト ・四ト ・ヨト ・ヨト

Arrow's Theorem

Suppose that in an election there are finitely many $n(\geq 3)$ candidates $\{c_1, ..., c_n\}$ and a set X of voters. Each voter makes a ranking(ordering of $c_1, ..., c_n$) of the candidates. An *fair election system*, is a way of configuring from each possible ranking list of the voters, an outcome of the election (a single ranking) which conforms to the following two rules:

- if all the voters enter the same ranking, then this is the outcome;
- Whether a candidate a precedes candidate b in the outcome depends only on their order on the different ranking lists of the individual voters (and it does not depend on where a and b are on those lists; i.e., on how the voters ranked other candidates).

Formally, an election system is a function $G: S_n^X \to S_n$ (where S_n is the set of permutations on *n* elements).

Theorem 7 (Arrow's Theorem)

If G is a fair election system on a finite set of voters, then there is a dictator, namely, there is $x_{dictator} \in X$ such that for every possible input $(\sigma_x)_{x \in X} \in S_n^X$, $G((\sigma_x)_{x \in X}) = \sigma_{x_{dictator}}$.

When X is an arbitrary set of voters we have the following generalization:

Theorem 8

If G is a fair election system, then there is an ultrafilter H on X such that for any input $(\sigma_x)_{x \in X} \in S_n^X$, $G((\sigma_x)_{x \in X}) = \pi$ if and only if the set $\{x \in X \mid \sigma_x = \pi\} \in H$.

In particular, we get Arrow's original theorem since ultrafilters on finite sets are principal.

Image: A math a math

Suppose that $\mathcal{M} = (M_i)_{i \in I}$ is an *I*-indexed family of mathematical objects of the same type (e.g. groups, topological spaces, vector spaces, or in general models over the same language). Let *U* be an ultrafilter over *I*. Using *U*, we can integrate \mathcal{M} into an object as follows:

Consider $\prod_{i \in I} M_i = \{f \mid Dom(f) = I \land f(i) \in M_i\}$. Define an equivalence relation

$$f \sim_U g \iff \{i \in I \mid f(i) = g(i)\} \in U$$

The ultraproduct is defined to be the set $\prod_{i \in I} M_i / U = \{ [f]_{\sim_U} \mid f \in \prod_{i \in I} M_i \}.$

Example 9

Suppose that each $M_i = (G_i, e_i, *_i)$ is a group. Then define over $G = \prod_{i \in I} G_i/U$ $e = [i \mapsto e_i]_U$ and $[f]_U * [g]_U = [i \mapsto f(i) *_i g(i)]_U$. One can check that (G, e, *) is also a group.

If every $M_i = M$ then we call this construction the ultrapower and denote it by M^I/U .

< □ > < □ > < □ > < □ > < □ >

Theorem 10 (Lós Theorem for groups)

Suppose that $\phi(x_1, ..., x_n)$ is a formula in the language of groups $\mathfrak{L}_G = \{e, *, {}^{-1}\}$ Then

 $(G, e, *) \models \phi([f_1]_U, ..., [f_n]_U) \text{ iff } \{i \in I \mid (M_i, e_i, *_i) \models \phi(f_1(i), ..., f_n(i))\} \in U$

So, for example, suppose that G is a group, and S is a system of equations (might be infinite) such that every finite subset of equations of S has a solution in G, then there is an extension of G to a group $G \subseteq G'$ where in G' S has a solution.

Image: A math a math

Theorem 11

Suppose that T is a theory in the language \mathcal{L} such that every finite set of sentences in T is consistent. Then T is consistent.

・ロト ・日下・ ・ ヨト・

Let $(X, \tau_X), (Y, \tau_Y)$ be Hausdorff topological spaces. Recall that

Definition 12

A function $f: X \to Y$ is continuous in the sequential sense if whenever $(x_n)_{n=0}^{\infty} \subseteq X$ is a sequence converging to $x \in X$ (namely, for every neighborhood $x \in U \in \tau_X$ there is N such that for all $n \ge N$, $x_n \in U$), the sequence $(f(x_n))_{n=0}^{\infty}$ converges to f(x).

It is well known that first-countable spaces a function f is continuous if and only if f is continuous in the sequential sense. In general the two are not equivalent (For example $f : \omega_1 + 1 \rightarrow \mathbb{R}$ defined by f(x) = 0 if $x < \omega_1$ and $f(\omega_1) = 1$ is not continuous but sequentially continuous.)

Definition 13

A net is a function $\vec{x} = (x_a)_{a \in A}$ such that (A, \leq_A) is a directed set. x is a limit of \vec{x} if for every $x \in U \in \tau_X$ there is a such that , $b \geq a$, $x_b \in U$ (AKA Moore-Smith convergence).

Now a function $f : X \to Y$ is continuous iff for every net $(x_a)_{a \in A}$ with limit x, $(f(x_a))_{a \in A}$ has limit f(x).

イロト イヨト イヨト イヨト

Some "types" of directed sets actually give essentially the same notion of net, for example, \mathbb{N} and \mathbb{N}_{even} or even $fin = \{X \in P(\mathbb{N}) \mid X \text{ is finite}\}$. More generally we would like to find an equivalence relation that reduces to the "essential" ordered sets. This is given by the Tukey order which was defined by J. Tukey [7]:

Definition 14

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff there is a cofinal map^a $f : Q \to P$. Define $(P, \leq_P) \equiv_T (Q, \leq_Q)$ iff $(P, \leq_P) \leq_T (Q, \leq_Q)$ and $(Q, \leq_Q) \leq_T (P, \leq_P)$.

^aif for every cofinal $B \subseteq Q$, $f[B] \subseteq P$ is cofinal.

If $B \leq_T A$, then any B-net $(x_b)_{b\in B}$ can be now replaced by $(x_{f(a)})_{a\in A}$ and if x is a limit point of $(x_b)_{b\in B}$ then x must be a limit of $(x_{f(a)})_{a\in A}$. The research of what are the "essential" A's is a completely set theoretic (order theoretic) question.

< □ > < □ > < □ > < □ > < □ >

Theorem 15 (Todorcevic 85[6])

Assuming MA_{\aleph_1} it is consistent that there are exactly 5 Tukey classes of directed posets of cardinality at most \aleph_1 .

Theorem 16 (Todorcevic 85[6])

for any regular $\kappa > \omega$, there are 2^{κ} -many distinct Tukey classes of cardinality κ^{\aleph_0} . In particular, there are at least $2^{cf(\mathfrak{c})}$ many distinct Tukey classes of cardinality \mathfrak{c} .

(日) (同) (三) (三) (三)

Definition 17

Given a net $\vec{x} = (x_a)_{a \in A}$, define for each $a \in A$, $x_{\geq a} = \{x_b \mid b \geq a\}$. The filter associated with \vec{x} , denoted by $F_{\vec{x}}$ is the filter generated by the sets $x_{\geq a}$. Namely, $T \in F_{\vec{x}}$ iff $\exists a \in A, x_{\geq a} \subseteq T$.

Indeed, $F_{\vec{x}} \subseteq P(X)$ is a filter over X. The filter $F_{\vec{x}}$ determines the convergence properties of the net \vec{x} in the sense that \vec{x} converges to x iff $\mathcal{N}(x) \subseteq F_{\vec{x}}$. This gives rise to the idea of converging filters:

Definition 18

We say that a filter F converges to a point x if $\mathcal{N}(x) \subseteq F$.

Since every filter can be extended to an ultrafilter, if F converges to a point x then there is an ultrafilter which covergese to x as well. Therefore, for most purposes, it suffices to consider only ultrafilters, or *ultranets*. For example, TFRE:

- $f: X \to Y$ is continuous.
- For every $x \in X$, and every ultrafilter U such that $\mathcal{N}(x) \subseteq U$, the ultrafilter $f_*(U) = \{B \subseteq Y \mid f^{-1}[B] \in U\}$ extends $\mathcal{N}(y)$.

< □ > < □ > < □ > < □ > < □ >

As we have seen earlier, it suffices to study the cofinal types of ultrafilters. This motivates the study of the directed order (U, \supseteq) where U is an ultrafilter.

Proposition 1

Suppose that $U \leq_T V$ where U, V are ultrafilters, then there is a (weakly) monotone map $f : V \to U$ which is cofinal.

The Tukey order has been studied extensively on ultrafilters on ω by Blass, Dobrinen, Milovic, Raghavan, Shelah, Solecki, Todorcevic, Verner and many others. It still entails quite challenging open problems.

Image: A math the second se

A taste from my research: The Tukey class of a Fubini product of ultrafilters.

イロト イヨト イヨト イ

Fact 19

Let $(P, \leq_P), (Q, \leq_Q)$ be directed orders. Then^a $(P \times Q, \leq_{\times})$ is the least upper bound of P, Q in the Tukey order. Hence $P =_{T} P \times P$.

 ${}^{a}(p,q)\leq_{ imes} (p',q')$ if and only if $p\leq_{P}p'$ and $q\leq_{Q}q'.$

Definition 20 (Fubini product)

Suppose that U is a ultrafilter over X and V an ultrafilter over Y. We denote by $U \cdot V$ the Fubini product of U and V which is the ultrafilter defined over $X \times Y$ as follows, for $A \subseteq X \times Y$,

$$A \in U \cdot V$$
 if and only if $\{x \in X \mid (A)_x \in Y\} \in U$

where $(A)_x = \{y \in Y_x \mid \langle x, y \rangle \in A\}$. If U = V, then U^2 is defined as $U \cdot U$ and refered to as the Fubini power.

It is not hard to check that $U \cdot V$ is also an ultrafilter and to show that $(U, \supseteq), (V, \supseteq) \leq_{\mathcal{T}} (U \cdot V, \supseteq)$. Therefore $(U \times V, \leq_{\times}) \leq_{\mathcal{T}} (U \cdot V, \supseteq)$.

Theorem 21 (Dobrinen-Todorcevic-Milovich)

For any
$$U, V, U \cdot V =_T U \times \prod_{n < \omega} V$$
.

Definition 22

Let U be an ultrafilter over \mathbb{N} .

- U is a p-point if every sequence (X_n | n < ω) ⊆ U has a U-measure one pseudo intersection.
- U is rapid if for every function $f : \mathbb{N} \to \mathbb{N}$ there is $X \in U$ such that for every $n < \omega$, $X(n) \ge f(n)$.

These definitions are obviously generalized to any cardinal $\kappa > \omega$.

Theorem 23 (Dobrinen-Todorcevic[3])

Suppose that V, U are ultrafilters on ω , V is a rapid p-point. Then $U \cdot V \equiv_T U \times V$. In particular, if U, V are rapid p-points then $U \cdot V =_T V \cdot U$.

In particular if U is a rapid p-point then $U \cdot U \equiv_T U$. Moreover, Dobrinen and Todorcevic constructed an example of a non-rapid p-point ultrafilter U such that $U <_T U^2$.

< □ > < □ > < □ > < □ > < □ >

Theorem 24 (Milovich[5])

If U is a p-point ultrafilter then on ω and V is any ultrafilter, then $V \cdot U = V \times U \times \omega^{\omega}$ and therefore if U, V are both p-points then $U \cdot V =_{T} V \cdot U$.

Theorem 25 (Dobrinen-B.[2])

Let U, V be any κ -complete ultrafilters over $\kappa > \omega$, then $U \cdot V \equiv_T U \times V$. In particular $U \cdot V =_T V \cdot U$ and $U \cdot U \equiv_T U$.

Theorem 26 (B. [1]2024)

For any two ultrafilters U, V (on any cardinal), $U \cdot V =_T V \cdot U$.

イロト イ団ト イヨト イヨト

Thank you for your attention!

メロト メロト メヨト メヨト

References I

- Tom Benhamou, Commutativity of cofinal types, Submitted (2024).
- Tom Benhamou and Natasha Dobrinen, *Cofinal types of ultrafilters over measurable cardinals*, submitted (2023), arXiv:2304.07214.
- Natasha Dobrinen and Stevo Todorcevic, *Tukey types of ultrafilters*, Illinois Journal of Mathematics **55** (2011), no. 3, 907–951.
- Shimon Garti, *Weak diamond and Galvin's property*, Periodica Mathematica Hungarica **74** (2017), 128–136.

David Milovich, *Forbidden rectangles in compacta*, Topology and Its Applications **159** (2012), no. 14, 3180–3189.

- Stevo Todorcevic, *Directed sets and cofinal types*, Transactions of the American Mathematical Society **290** (1985), no. 2, 711–723.
 - John W. Tukey, *Convergence and uniformity in topology. (am-2)*, Princeton University Press, 1940.

*ロト *個ト * ヨト * ヨ

Trying to relax the assumption $\kappa^{<\kappa} = \kappa$ in Gavin's theorem, we have the following consistency result by Abraham and Shelah.

Theorem 27 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and $\kappa^+ < cf(\lambda) \le \lambda$. Then there is a forcing extension by a κ -directed, cofinality preserving forcing notion such that $2^{\kappa^+} = \lambda$ and there is a sequence $\langle C_i | i < \lambda \rangle$ such that:

• C_i is a club at κ^+ .

2 for every *I* ∈
$$[λ]^{κ^+}$$
, $|∩_{i ∈ I} C_i| < κ$.

In particular,
$$\neg Gal(Cub_{\kappa^+}, \kappa^+, 2^{\kappa^+}).$$

A natural question is what happens on inaccessible cardinals? of course, by Galvin's theorem, we should be interested in weakly inaccessible Cardinals.

Question

Is it consistent to have a weakly inaccessible cardinal κ such that $\neg Gal(Cub_{\kappa}, \kappa, \kappa^+)$?

There are some limiting results due to Garti (see [4])

イロト イヨト イヨト イヨ

At successors of singular cardinals

Our focus is on the second case which does not fall under Abraham-Shelah's- the case of successors of singulars. Is it consistent to have $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ for a singular κ ? Again, by Galvin's theorem, this would require violating SCH.

Theorem 28 (Garti, Poveda and B.)

Assume GCH and that there is a (κ, κ^{++}) -extender^a. Then there is a forcing extension where $cf(\kappa) = \omega$ and $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

^aThis situation can be forced just from the assumption $o(\kappa) = \kappa^{++}$

The idea is to Easton-support iterate the Abraham-Shelah's forcing on inaccessibles $\leq \kappa$. This produces a model of $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$. Using a sophistication of Woodin's argument due to Ben-Shalom [?], we can argue that κ remains measurable after this iteration. Finally, singularize κ using Prikry/Magidor forcing. The key lemma is the following:

Lemma 29

A κ^+ -cc forcing preserves a witness for $\neg Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

・ロト ・回 ト ・ ヨト ・

The strong negation at successor of singulars

The sequence of clubs $\langle C_i \mid i < \kappa^+ \rangle$ produced by the Abraham-Shelah forcing, witnesses a stronger failure of $Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$, indeed for any $I \in [\kappa^{++}]^{\kappa^+}$, $\bigcap_{i \in I} C_i$ is actually of **size less than** κ . Let us denote this by $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Interestingly, the previous argument does work for the strong negation:

Proposition 2

In general κ^+ -cc forcings do not preserve $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$.

Indeed, any forcing which adds a set of size κ which diagonalize $(Cub_{\kappa})^{V}$ (e.g. diagonalizing the club filter, Magidor forcing with $o(\kappa) \geq \kappa$) kills $\neg_{st} Gal(Cub_{\kappa^{+}}, \kappa^{+}, \kappa^{++})$ (namely satisfy $\neg(\neg_{st} Gal(Cub_{\kappa^{+}}, \kappa^{+}, \kappa^{++}))$).

Question

Is it a ZFC-theorem that $\neg_{st} Gal(Cub_{\kappa^+}, \kappa^+, \kappa^{++})$ cannot hold at a successor of a singular cardinal? Explicitly, is it true that from any sequence of κ^{++} -many clubs at κ^+ one can always extract a subfamily of size κ^+ for which the intersection is of size at least κ ?

Two opposite results for Prikry forcing

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize $(Cub_{\kappa})^{V}$:

Theorem 30

Let U be a normal ultrafilter over κ . Let $\langle c_n | n < \omega \rangle$ be V-generic Prikry sequence for U, and suppose that $A \in V[\langle c_n | n < \omega \rangle]$ diagonalize $(Cub_{\kappa})^V$. Then, there exists $\xi < \kappa$ such that $A \setminus \xi \subseteq \{c_n | n < \omega\}$. In particular, $|A \setminus \xi| \leq \aleph_0$.

On the other hand, just forcing a Prikry sequence is not enough:

Theorem 31

Let ${\mathcal C}$ be a witness for the strong negation. Then there exists ${\mathcal D},$ such that:

- **1** \mathcal{D} is also a witness for the strong negation;
- So For every normal ultrafilter U over κ , forcing with Prikry(U) yields a generic extension where \mathcal{D} cease to be a witness.

イロト イヨト イヨト イヨ