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Classical notions of and "large”:
@ A large enough number - where is the cut-off?
@ Infinite sets.
@ Large cardinality (for example, uncountable sets).
@ Events of probability one/positive.
@ Full Lebesgue measure.
Classical notions of and "small":
Q 2 small number.
@ finite sets.
© sets of small cardinality.
@ events of probability zero.
@ Lebesgue measure 0.

You can clearly see that there is some Duality here between small and large.

Q. Is there a single definition that treats all these notions?
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Definition 1

Let A be any set. A family of sets U C P(A) is called a filter over A if:
1. Ac U, 0 ¢ U.
2. U is closed under intersections: for all X, Y € U, XNY € U.
3. U is upward closed: for all X € U an forevery X C Y C A, Y € U.

Important examples of filters:
@ The Freche filter on any infinite cardinal x is FR, = {X C k| |k \ X| < k}.
@ Given a probability space (Q,P,X), let Fo = {X € X | P(X) =1}.
@ The filter of measurable sets with null complements
L={XCR|pue(R\X) =0}
o Given a family of non-empty sets B C P(A), closed under finite intersection,

Fr={XCA|3Ibe B, bC X} is a called, the filter generated by X. A
similar construction works if B only has the finite intersection property.

We think of sets in a filter as large sets, and a fixed filter is a fixed notion of
largeness.
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Ideals

The dual notion of a filter, which corresponds to smallness is the notion of ideals:

Definition 2

Let A be any set. A family of sets Z C P(A) is called a ideal over A if:
1.0eU A¢U.
2. U is closed under unions.

3. U is downward closed to inclusion.

@ The Fre¢he ideal on any infinite cardinal k is Z,, = {X C & | | X| < k}.
o Given a probability space (Q,P,X), let Zo = {X € X | P(X) = 0}.
@ The filter of measurable sets with null complements
L={XCR| pes(X) =0}
o Given a filter F over A, the dual ideal, denoted by F* = {A\ X | X € F}.

This is a specific case of the other notion of ideals from algebra (where product is
intersection and addition is union).
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Ultrafilters

Given a filter F, we have:
@ Sets in F are large.
@ Sets in F* are small.

@ What about sets which are neither in F nor in F*?7 For example, if
F = FR, the sets X C w such that [X| = |w \ X| = Ro.

Given an ideal /, a set X ¢ [ is called positive.

Definition 3

A filter U over A is called an ultrafilter if:
4. for every X C A, either X € Uor A\ X € U.

So an ultrafilter U determines whether each set is small or large. In other words,
all positive sets are large.

Example 4
Given a € A, define U, = {X C A| a€ X}. Then U, is called a principal ideal.

Q. Are there any non-principal ultrafilters?
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Non-principal ultrafilters
If U is an ultrafilter over a finite set X then U is principal. \

Theorem 5 (The ultrafilter lemma)

Assume AC. Then every filter can be extended to an ultrafilter. Namely each filter
F is a subset of some ultrafilter U.

Applying the previous Theorem to FR,, = {X Cw | |w \ X| < w}, we obtain an
ultrafilter U. It cannot be principle, since if {a} € U, then so is

w\ {a} € FR, C U, but then () € U, contradiction.

Ultrafilters are highly non-constructive sets. Every X € P(w) can be identified
with a real number 0.fx(0)fx(1)fx(2)... € [0,1] where fx is the indicator function.
Under this identification, an ultrafilter can be identified with a subset of [0, 1].

Theorem 6

If U is a non-principle ultrafilter over w, then U is not Lebesgue measurable when
identified as a subset of [0, 1].
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Part 2: Applications
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Arrow’'s Theorem

Suppose that in an election there are finitely many n(> 3) candidates {cy, ..., ¢, }
and a set X of voters. Each voter makes a ranking(ordering of ¢, ..., ¢,) of the
candidates. An fair election system, is a way of configuring from each possible
ranking list of the voters, an outcome of the election (a single ranking) which
conforms to the following two rules:

@ if all the voters enter the same ranking, then this is the outcome;

@ whether a candidate a precedes candidate b in the outcome depends only on
their order on the different ranking lists of the individual voters (and it does
not depend on where a and b are on those lists; i.e., on how the voters
ranked other candidates).

Formally, an election system is a function G : S — S, (where S, is the set of
permutations on n elements).

Theorem 7 (Arrow’s Theorem)

If G is a fair election system on a finite set of voters, then there is a dictator,
namely, there is Xgictator € X such that for every possible input (ox)xex € SX,
G((UX)XEX) = OXdictator'
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Arrow's Theorem on an arbitrary set of voters

When X is an arbitrary set of voters we have the following generalization:

Theorem 8

If G is a fair election system, then there is an ultrafilter H on X such that for any
input (0x)xex € SiX, G((0x)xex) = m if and only if the set {x € X | o, =7} € H.

In particular, we get Arrow’s original theorem since ultrafilters on finite sets are
principal.
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The ultraproduct construction

Suppose that M = (M;);c; is an I-indexed family of mathematical objects of the
same type (e.g. groups, topological spaces, vector spaces, or in general models
over the same language). Let U be an ultrafilter over /. Using U, we can
integrate M into an object as follows:

Consider [[;; M; = {f | Dom(f) = I A f(i) € M;}. Define an equivalence relation
fryg={icl|f(i)=g(i)} €U
The ultraproduct is defined to be the set [, M;/U = {[f]~, | f € [[;c, Mi}.

iel

Example 9

Suppose that each M; = (G;, e;, ¥;) is a group. Then define over G =[], G;/U

e=[i— ey and [flu = [g]lu =[i— f(i) *; g(i)]u. One can check that (G, e, *)
is also a group.

If every M; = M then we call this construction the ultrapower and denote it by
M'U.
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Theorem 10 (L6s Theorem for groups)

Suppose that ¢(xi, ..., x,) is a formula in the language of groups £¢ = {e,*, ~1}
Then

(G, e, %) = oAy, . [f]u) i {i € 1] (M, e, i) = o(A(1), -, ai))} € U

So, for example, suppose that G is a group, and S is a system of equations (might
be infinite) such that every finite subset of equations of S has a solution in G,
then there is an extension of G to a group G C G’ where in G’ S has a solution.
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The compactness theorem

Suppose that T is a theory in the language L such that every finite set of
sentences in T is consistent. Then T is consistent.
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Let (X, 7x), (Y, Ty) be Hausdorff topological spaces. Recall that

Definition 12

A function f : X — Y is continuous in the sequential sense if whenever

(xn)525 € X is a sequence converging to x € X (namely, for every neighborhood
x € U € 7x there is N such that for all n > N, x, € U), the sequence (f(x,))2,
converges to f(x).

It is well known that first-countable spaces a function f is continuous if and only if
f is continuous in the sequential sense. In general the two are not equivalent (For
example f : w; + 1 — R defined by f(x) =0 if x < w;y and f(w;) =1 is not
continuous but sequentially continuous.)

Definition 13

A net is a function X = (x,)a.ca such that (A, <a) is a directed set. x is a limit of
X if for every x € U € 7x there is a such that , b > a, x, € U (AKA Moore-Smith
convergence).

Now a function f : X — Y is continuous iff for every net (x;)sca with limit x,
(f(xa2))aca has limit f(x).
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Cofinal maps

Some "types” of directed sets actually give essentially the same notion of net, for
example, N and Neye, or even fin = {X € P(N) | X is finite}. More generally we

would like to find an equivalence relation that reduces to the "essential” ordered

sets. This is given by the Tukey order which was defined by J. Tukey [7]:

Definition 14

Let (P, <p),(Q,<g) be two partially ordered (directed) sets. Define
(P, <p) <7 (Q, <) iff there is a cofinal map® f : @ — P. Define
(P,<p) =7 (Q,<Zq) iff (P,<p) <7 (Q,<q) and (Q,<q) <7 (P, <p).

aif for every cofinal B C Q, f[B] C P is cofinal.

If B <t A, then any B-net (x)pep can be now replaced by (x¢(s))aca and if x is
a limit point of (x)sep then x must be a limit of (x¢(a))aca-

The research of what are the "essential” A's is a completely set theoretic (order
theoretic) question.
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Classic results of Todorcevic

Theorem 15 (Todorcevic 85[6])

Assuming MAy, it is consistent that there are exactly 5 Tukey classes of directed
posets of cardinality at most Nj.

Theorem 16 (Todorcevic 85[6])

for any regular k > w, there are 2"-many distinct Tukey classes of cardinality r™°.
In particular, there are at least 2<7() many distinct Tukey classes of cardinality c.

v
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Definition 17

Given a net X = (x,)aca, define for each a € A, x>, = {xp | b > a}. The filter
associated with X, denoted by F is the filter generated by the sets x>,. Namely,
TeFgiffdacA x>, CT.

Indeed, Fx C P(X) is a filter over X. The filter F; determines the convergence
properties of the net X in the sense that X converges to x iff N'(x) C Fz. This
gives rise to the idea of converging filters:

Definition 18

We say that a filter F converges to a point x if N(x) C F.

Since every filter can be extended to an ultrafilter, if F converges to a point x
then there is an ultrafilter which covergese to x as well. Therefore, for most
purposes, it suffices to consider only ultrafilters, or ultranets. For example, TFRE:

o f: X — Y is continuous.

@ For every x € X, and every ultrafilter U such that N'(x) C U, the ultrafilter
f.(U)={B C Y| f![B] € U} extends N (y).
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The Tukey order on ultrafilters

As we have seen earlier, it suffices to study the cofinal types of ultrafilters. This
motivates the study of the directed order (U, D) where U is an ultrafilter.

Proposition 1

Suppose that U <t V where U,V are ultrafilters, then there is a (weakly)
monotone map f : V — U which is cofinal.

The Tukey order has been studied extensively on ultrafilters on w by Blass,
Dobrinen, Milovic, Raghavan, Shelah, Solecki, Todorcevic, Verner and many
others. It still entails quite challenging open problems.
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A taste from my research: The Tukey class of a Fubini product of ultrafilters.
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Let (P,<p),(Q,<q) be directed orders. Then® (P x Q,<y) is the least upper
bound of P, @ in the Tukey order. Hence P =1 P x P.

2(p,q) <x (p',q") if and only if p <p p’ and g <q q.

Definition 20 (Fubini product)

Suppose that U is a ultrafilter over X and V an ultrafilter over Y. We denote by
U - V the Fubini product of U and V which is the ultrafilter defined over X x Y
as follows, for AC X x Y,

AcU-Vifandonlyif {xe X|(A)xe€ Y} e U

where (A)x = {y € Y« | (x,y) € A}. If U=V, then U? is defined as U - U and
refered to as the Fubini power.

It is not hard to check that U - V is also an ultrafilter and to show that
(U,2),(V,2) <7 (U-V,D). Therefore (U x V,<,) <7 (U-V,D).

Theorem 21 (Dobrinen-Todorcevic-Milovich)

Forany U,V, U-V =7 Ux]],., V.
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Definition 22

Let U be an ultrafilter over N.

e U is a p-point if every sequence (X, | n < w) C U has a U-measure one
pseudo intersection.
@ U is rapid if for every function f : N — N there is X € U such that for every
n<w, X(n) > f(n).
These definitions are obviously generalized to any cardinal x > w.

A\

Theorem 23 (Dobrinen-Todorcevic[3])

Suppose that V| U are ultrafilters on w, V is a rapid p-point. Then
U-V =7 Ux V. Inparticular, if U,V are rapid p-points then U -V =1 V - U.

y

In particular if U is a rapid p-point then U - U =7 U. Moreover, Dobrinen and
Todorcevic constructed an example of a non-rapid p-point ultrafilter U such that
U<r U2
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Theorem 24 (Milovich[5])

If U is a p-point ultrafilter then on w and V is any ultrafilter, then
V.-U=V xUxuw*” and therefore if U, V are both p-points then U-V =1 V - U.

Theorem 25 (Dobrinen-B.[2])

Let U,V be any k-complete ultrafilters over k > w, then U-V =7 U x V. In
particular U-V =7+ V-U and U- U =7 U.

Theorem 26 (B. [1]2024)
For any two ultrafilters U,V (on any cardinal), U-V =7 V - U.
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Thank you for your attention!
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Trying to relax the assumption k<% = k in Gavin's theorem, we have the following
consistency result by Abraham and Shelah.

Theorem 27 (Abraham-Shelah forcing)

Assume GCH, let k be a regular cardinal, and k™ < cf(\) < \. Then there is a
forcing extension by a k-directed, cofinality preserving forcing notion such that
25" = X and there is a sequence (C; | i < \) such that:

@ Ciisaclubatkt.
Q forevery | € [)\]’””+, Nier Gi| < k.
In particular, = Gal(Cub,.+, x*,25").

A natural question is what happens on inaccessible cardinals? of course, by
Galvin's theorem, we should be interested in weakly inaccessible Cardinals.

Is it consistent to have a weakly inaccessible cardinal k such that
—Gal(Cub,;, k5, 5T)?

There are some limiting results due to Garti (see [4])
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At successors of singular cardinals

Our focus is on the second case which does not fall under Abraham-Shelah's- the
case of successors of singulars. Is it consistent to have —Gal(Cub,+, k+, k1T) for
a singular k? Again, by Galvin's theorem, this would require violating SCH.

Theorem 28 (Garti, Poveda and B.)

Assume GCH and that there is a (k, xT)-extender®. Then there is a forcing
extension where cf (k) = w and —~Gal(Cub,+, K, K1T).

aThis situation can be forced just from the assumption o(k) = k™

The idea is to Easton-support iterate the Abraham-Shelah’s forcing on
inaccessibles < k. This produces a model of —=Gal(Cub,+,x*, k). Using a
sophistication of Woodin's argument due to Ben-Shalom [?], we can argue that &
remains measurable after this iteration. Finally, singularize x using Prikry/Magidor
forcing. The key lemma is the following:

A kT -cc forcing preserves a witness for =Gal(Cub,+, kT, k7).
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The strong negation at successor of singulars

The sequence of clubs (C; | i < k™) produced by the Abraham-Shelah forcing,
witnesses a stronger failure of Gal(Cub,.+,x", k"), indeed for any I € [x+]"",
Nicr Ci is actually of size less than k. Let us denote this by

st Gal(Cuby+, kT, k7).

Interestingly, the previous argument does work for the strong negation:

Proposition 2

In general kT -cc forcings do not preserve —g Gal(Cub,+, kT, k™).

Indeed, any forcing which adds a set of size x which diagonalize (Cub,)" (e.g.
diagonalizing the club filter, Magidor forcing with o(x) > k) kills
=5t Gal(Cub,+, k1, k1) (namely satisfy —(—s Gal(Cub,+, k1, 51T))).

Is it a ZFC-theorem that —g Gal(Cub,.+, k™, k1) cannot hold at a successor of a
singular cardinal? Explicitly, is it true that from any sequence of k" -many clubs
at kT one can always extract a subfamily of size k™ for which the intersection is

of size at least k7
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Two opposite results for Prikry forcing

On one hand Prikry forcing does not add a set of cardinality x which diagonalize
(Cub,)":

Theorem 30

Let U be a normal ultrafilter over k. Let (c, | n < w) be V-generic Prikry
sequence for U, and suppose that A € V[(c, | n < w)| diagonalize (Cub,,)" .
Then, there exists § < k such that A\ § C {c, | n < w}. In particular,

|A\ €] < Ro.

On the other hand, just forcing a Prikry sequence is not enough:

Let C be a witness for the strong negation. Then there exists D, such that:
@ D is also a witness for the strong negation;

@ For every normal ultrafilter U over k, forcing with Prikry(U) yields a generic
extension where D cease to be a witness.
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