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Examples

Classical notions of and ”large”:

1 A large enough number - where is the cut-off?

2 Infinite sets.

3 Large cardinality (for example, uncountable sets).

4 Events of probability one/positive.

5 Full Lebesgue measure.

Classical notions of and ”small”:

1 a small number.

2 finite sets.

3 sets of small cardinality.

4 events of probability zero.

5 Lebesgue measure 0.

You can clearly see that there is some Duality here between small and large.

Q. Is there a single definition that treats all these notions?
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Filters

Definition 1

Let A be any set. A family of sets U ⊆ P(A) is called a filter over A if:

1. A ∈ U, ∅ /∈ U.

2. U is closed under intersections: for all X ,Y ∈ U, X ∩ Y ∈ U.

3. U is upward closed: for all X ∈ U an for every X ⊆ Y ⊆ A, Y ∈ U.

Important examples of filters:

The Frećhe filter on any infinite cardinal κ is FRκ = {X ⊆ κ | |κ \ X | < κ}.
Given a probability space (Ω,P,Σ), let F0 = {X ∈ Σ | P(X ) = 1}.
The filter of measurable sets with null complements
L = {X ⊆ R | µLeb(R \ X ) = 0}.
Given a family of non-empty sets B ⊆ P(A), closed under finite intersection,
FB = {X ⊆ A | ∃b ∈ B, b ⊆ X} is a called, the filter generated by X . A
similar construction works if B only has the finite intersection property.

We think of sets in a filter as large sets, and a fixed filter is a fixed notion of
largeness.
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Ideals

The dual notion of a filter, which corresponds to smallness is the notion of ideals:

Definition 2

Let A be any set. A family of sets I ⊆ P(A) is called a ideal over A if:

1. ∅ ∈ U, A /∈ U.

2. U is closed under unions.

3. U is downward closed to inclusion.

The Frećhe ideal on any infinite cardinal κ is Iκ = {X ⊆ κ | |X | < κ}.
Given a probability space (Ω,P,Σ), let I0 = {X ∈ Σ | P(X ) = 0}.
The filter of measurable sets with null complements
L = {X ⊆ R | µLeb(X ) = 0}.
Given a filter F over A, the dual ideal, denoted by F∗ = {A \ X | X ∈ F}.

This is a specific case of the other notion of ideals from algebra (where product is
intersection and addition is union).
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Ultrafilters

Given a filter F , we have:

Sets in F are large.

Sets in F∗ are small.

What about sets which are neither in F nor in F∗? For example, if
F = FRω the sets X ⊆ ω such that |X | = |ω \ X | = ℵ0.

Given an ideal I , a set X /∈ I is called positive.

Definition 3
A filter U over A is called an ultrafilter if:

4. for every X ⊆ A, either X ∈ U or A \ X ∈ U.

So an ultrafilter U determines whether each set is small or large. In other words,
all positive sets are large.

Example 4

Given a ∈ A, define Ua = {X ⊆ A | a ∈ X}. Then Ua is called a principal ideal.

Q. Are there any non-principal ultrafilters?
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Non-principal ultrafilters

Exercise 1
If U is an ultrafilter over a finite set X then U is principal.

Theorem 5 (The ultrafilter lemma)

Assume AC. Then every filter can be extended to an ultrafilter. Namely each filter
F is a subset of some ultrafilter U.

Applying the previous Theorem to FRω = {X ⊆ ω | |ω \ X | < ω}, we obtain an
ultrafilter U. It cannot be principle, since if {a} ∈ U, then so is
ω \ {a} ∈ FRω ⊆ U, but then ∅ ∈ U, contradiction.
Ultrafilters are highly non-constructive sets. Every X ∈ P(ω) can be identified
with a real number 0.fX (0)fX (1)fX (2)... ∈ [0, 1] where fX is the indicator function.
Under this identification, an ultrafilter can be identified with a subset of [0, 1].

Theorem 6
If U is a non-principle ultrafilter over ω, then U is not Lebesgue measurable when
identified as a subset of [0, 1].
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Part 2: Applications
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Arrow’s Theorem

Suppose that in an election there are finitely many n(≥ 3) candidates {c1, ..., cn}
and a set X of voters. Each voter makes a ranking(ordering of c1, ..., cn) of the
candidates. An fair election system, is a way of configuring from each possible
ranking list of the voters, an outcome of the election (a single ranking) which
conforms to the following two rules:

1 if all the voters enter the same ranking, then this is the outcome;

2 whether a candidate a precedes candidate b in the outcome depends only on
their order on the different ranking lists of the individual voters (and it does
not depend on where a and b are on those lists; i.e., on how the voters
ranked other candidates).

Formally, an election system is a function G : SX
n → Sn (where Sn is the set of

permutations on n elements).

Theorem 7 (Arrow’s Theorem)

If G is a fair election system on a finite set of voters, then there is a dictator,
namely, there is xdictator ∈ X such that for every possible input (σx)x∈X ∈ SX

n ,
G ((σx)x∈X ) = σxdictator .
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Arrow’s Theorem on an arbitrary set of voters

When X is an arbitrary set of voters we have the following generalization:

Theorem 8
If G is a fair election system, then there is an ultrafilter H on X such that for any
input (σx)x∈X ∈ SX

n , G ((σx)x∈X ) = π if and only if the set {x ∈ X | σx = π} ∈ H.

In particular, we get Arrow’s original theorem since ultrafilters on finite sets are
principal.
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The ultraproduct construction

Suppose that M = (Mi )i∈I is an I -indexed family of mathematical objects of the
same type (e.g. groups, topological spaces, vector spaces, or in general models
over the same language). Let U be an ultrafilter over I . Using U, we can
integrate M into an object as follows:
Consider

∏
i∈I Mi = {f | Dom(f ) = I ∧ f (i) ∈ Mi}. Define an equivalence relation

f ∼U g ⇐⇒ {i ∈ I | f (i) = g(i)} ∈ U

The ultraproduct is defined to be the set
∏

i∈I Mi/U = {[f ]∼U
| f ∈

∏
i∈I Mi}.

Example 9

Suppose that each Mi = (Gi , ei , ∗i ) is a group. Then define over G =
∏

i∈I Gi/U
e = [i 7→ ei ]U and [f ]U ∗ [g ]U = [i 7→ f (i) ∗i g(i)]U . One can check that (G , e, ∗)
is also a group.

If every Mi = M then we call this construction the ultrapower and denote it by
M I/U.
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Theorem 10 (Lós Theorem for groups)

Suppose that φ(x1, ..., xn) is a formula in the language of groups LG = {e, ∗,−1}
Then

(G , e, ∗) |= φ([f1]U , ..., [fn]U) iff {i ∈ I | (Mi , ei , ∗i ) |= φ(f1(i), ..., fn(i))} ∈ U

So, for example, suppose that G is a group, and S is a system of equations (might
be infinite) such that every finite subset of equations of S has a solution in G ,
then there is an extension of G to a group G ⊆ G ′ where in G ′ S has a solution.
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The compactness theorem

Theorem 11
Suppose that T is a theory in the language L such that every finite set of
sentences in T is consistent. Then T is consistent.
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Let (X , τX ), (Y , τY ) be Hausdorff topological spaces. Recall that

Definition 12
A function f : X → Y is continuous in the sequential sense if whenever
(xn)∞n=0 ⊆ X is a sequence converging to x ∈ X (namely, for every neighborhood
x ∈ U ∈ τX there is N such that for all n ≥ N, xn ∈ U), the sequence (f (xn))∞n=0

converges to f (x).

It is well known that first-countable spaces a function f is continuous if and only if
f is continuous in the sequential sense. In general the two are not equivalent (For
example f : ω1 + 1→ R defined by f (x) = 0 if x < ω1 and f (ω1) = 1 is not
continuous but sequentially continuous.)

Definition 13

A net is a function ~x = (xa)a∈A such that (A,≤A) is a directed set. x is a limit of
~x if for every x ∈ U ∈ τX there is a such that , b ≥ a, xb ∈ U (AKA Moore-Smith
convergence).

Now a function f : X → Y is continuous iff for every net (xa)a∈A with limit x ,
(f (xa))a∈A has limit f (x).
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Cofinal maps

Some ”types” of directed sets actually give essentially the same notion of net, for
example, N and Neven or even fin = {X ∈ P(N) | X is finite}. More generally we
would like to find an equivalence relation that reduces to the ”essential” ordered
sets. This is given by the Tukey order which was defined by J. Tukey [7]:

Definition 14

Let (P,≤P), (Q,≤Q) be two partially ordered (directed) sets. Define
(P,≤P) ≤T (Q,≤Q) iff there is a cofinal mapa f : Q → P. Define
(P,≤P) ≡T (Q,≤Q) iff (P,≤P) ≤T (Q,≤Q) and (Q,≤Q) ≤T (P,≤P).

aif for every cofinal B ⊆ Q, f [B] ⊆ P is cofinal.

If B ≤T A, then any B-net (xb)b∈B can be now replaced by (xf (a))a∈A and if x is
a limit point of (xb)b∈B then x must be a limit of (xf (a))a∈A.
The research of what are the ”essential” A’s is a completely set theoretic (order
theoretic) question.
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Classic results of Todorcevic

Theorem 15 (Todorcevic 85[6])

Assuming MAℵ1 it is consistent that there are exactly 5 Tukey classes of directed
posets of cardinality at most ℵ1.

Theorem 16 (Todorcevic 85[6])

for any regular κ > ω, there are 2κ-many distinct Tukey classes of cardinality κℵ0 .
In particular, there are at least 2cf (c) many distinct Tukey classes of cardinality c.
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Definition 17

Given a net ~x = (xa)a∈A, define for each a ∈ A, x≥a = {xb | b ≥ a}. The filter
associated with ~x , denoted by F~x is the filter generated by the sets x≥a. Namely,
T ∈ F~x iff ∃a ∈ A, x≥a ⊆ T .

Indeed, F~x ⊆ P(X ) is a filter over X . The filter F~x determines the convergence
properties of the net ~x in the sense that ~x converges to x iff N (x) ⊆ F~x . This
gives rise to the idea of converging filters:

Definition 18

We say that a filter F converges to a point x if N (x) ⊆ F .

Since every filter can be extended to an ultrafilter, if F converges to a point x
then there is an ultrafilter which covergese to x as well. Therefore, for most
purposes, it suffices to consider only ultrafilters, or ultranets. For example, TFRE:

f : X → Y is continuous.

For every x ∈ X , and every ultrafilter U such that N (x) ⊆ U, the ultrafilter
f∗(U) = {B ⊆ Y | f −1[B] ∈ U} extends N (y).
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The Tukey order on ultrafilters

As we have seen earlier, it suffices to study the cofinal types of ultrafilters. This
motivates the study of the directed order (U,⊇) where U is an ultrafilter.

Proposition 1

Suppose that U ≤T V where U,V are ultrafilters, then there is a (weakly)
monotone map f : V → U which is cofinal.

The Tukey order has been studied extensively on ultrafilters on ω by Blass,
Dobrinen, Milovic, Raghavan, Shelah, Solecki, Todorcevic, Verner and many
others. It still entails quite challenging open problems.
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A taste from my research: The Tukey class of a Fubini product of ultrafilters.
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Fact 19

Let (P,≤P), (Q,≤Q) be directed orders. Thena (P × Q,≤×) is the least upper
bound of P,Q in the Tukey order. Hence P =T P × P.

a(p, q) ≤× (p′, q′) if and only if p ≤P p′ and q ≤Q q′.

Definition 20 (Fubini product)

Suppose that U is a ultrafilter over X and V an ultrafilter over Y . We denote by
U · V the Fubini product of U and V which is the ultrafilter defined over X × Y
as follows, for A ⊆ X × Y ,

A ∈ U · V if and only if {x ∈ X | (A)x ∈ Y } ∈ U

where (A)x = {y ∈ Yx | 〈x , y〉 ∈ A}. If U = V , then U2 is defined as U · U and
refered to as the Fubini power.

It is not hard to check that U · V is also an ultrafilter and to show that
(U,⊇), (V ,⊇) ≤T (U · V ,⊇). Therefore (U × V ,≤×) ≤T (U · V ,⊇).

Theorem 21 (Dobrinen-Todorcevic-Milovich)

For any U,V , U · V =T U ×
∏

n<ω V .
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Definition 22
Let U be an ultrafilter over N.

U is a p-point if every sequence 〈Xn | n < ω〉 ⊆ U has a U-measure one
pseudo intersection.

U is rapid if for every function f : N→ N there is X ∈ U such that for every
n < ω, X (n) ≥ f (n).

These definitions are obviously generalized to any cardinal κ > ω.

Theorem 23 (Dobrinen-Todorcevic[3])

Suppose that V ,U are ultrafilters on ω, V is a rapid p-point. Then
U · V ≡T U × V . In particular, if U,V are rapid p-points then U · V =T V · U.

In particular if U is a rapid p-point then U · U ≡T U. Moreover, Dobrinen and
Todorcevic constructed an example of a non-rapid p-point ultrafilter U such that
U <T U2.
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Theorem 24 (Milovich[5])

If U is a p-point ultrafilter then on ω and V is any ultrafilter, then
V ·U = V ×U ×ωω and therefore if U,V are both p-points then U ·V =T V ·U.

Theorem 25 (Dobrinen-B.[2])

Let U,V be any κ-complete ultrafilters over κ > ω, then U · V ≡T U × V . In
particular U · V =T V · U and U · U ≡T U.

Theorem 26 (B. [1]2024)

For any two ultrafilters U,V (on any cardinal), U · V =T V · U.
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Thank you for your attention!
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Trying to relax the assumption κ<κ = κ in Gavin’s theorem, we have the following
consistency result by Abraham and Shelah.

Theorem 27 (Abraham-Shelah forcing)

Assume GCH, let κ be a regular cardinal, and κ+ < cf (λ) ≤ λ. Then there is a
forcing extension by a κ-directed, cofinality preserving forcing notion such that
2κ

+

= λ and there is a sequence 〈Ci | i < λ〉 such that:

1 Ci is a club at κ+.

2 for every I ∈ [λ]κ
+

, | ∩i∈I Ci | < κ.

In particular, ¬Gal(Cubκ+ , κ+, 2κ
+

).

A natural question is what happens on inaccessible cardinals? of course, by
Galvin’s theorem, we should be interested in weakly inaccessible Cardinals.

Question
Is it consistent to have a weakly inaccessible cardinal κ such that
¬Gal(Cubκ, κ, κ

+)?

There are some limiting results due to Garti (see [4])
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At successors of singular cardinals

Our focus is on the second case which does not fall under Abraham-Shelah’s- the
case of successors of singulars. Is it consistent to have ¬Gal(Cubκ+ , κ+, κ++) for
a singular κ? Again, by Galvin’s theorem, this would require violating SCH.

Theorem 28 (Garti, Poveda and B.)

Assume GCH and that there is a (κ, κ++)-extendera. Then there is a forcing
extension where cf (κ) = ω and ¬Gal(Cubκ+ , κ+, κ++).

aThis situation can be forced just from the assumption o(κ) = κ++

The idea is to Easton-support iterate the Abraham-Shelah’s forcing on
inaccessibles ≤ κ. This produces a model of ¬Gal(Cubκ+ , κ+, κ++). Using a
sophistication of Woodin’s argument due to Ben-Shalom [?], we can argue that κ
remains measurable after this iteration. Finally, singularize κ using Prikry/Magidor
forcing. The key lemma is the following:

Lemma 29

A κ+-cc forcing preserves a witness for ¬Gal(Cubκ+ , κ+, κ++).
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The strong negation at successor of singulars

The sequence of clubs 〈Ci | i < κ+〉 produced by the Abraham-Shelah forcing,

witnesses a stronger failure of Gal(Cubκ+ , κ+, κ++), indeed for any I ∈ [κ++]κ
+

,
∩i∈ICi is actually of size less than κ. Let us denote this by
¬stGal(Cubκ+ , κ+, κ++).
Interestingly, the previous argument does work for the strong negation:

Proposition 2

In general κ+-cc forcings do not preserve ¬stGal(Cubκ+ , κ+, κ++).

Indeed, any forcing which adds a set of size κ which diagonalize (Cubκ)V (e.g.
diagonalizing the club filter, Magidor forcing with o(κ) ≥ κ) kills
¬stGal(Cubκ+ , κ+, κ++) (namely satisfy ¬(¬stGal(Cubκ+ , κ+, κ++))).

Question

Is it a ZFC -theorem that ¬stGal(Cubκ+ , κ+, κ++) cannot hold at a successor of a
singular cardinal? Explicitly, is it true that from any sequence of κ++-many clubs
at κ+ one can always extract a subfamily of size κ+ for which the intersection is
of size at least κ?
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Two opposite results for Prikry forcing

On one hand Prikry forcing does not add a set of cardinality κ which diagonalize
(Cubκ)V :

Theorem 30

Let U be a normal ultrafilter over κ. Let 〈cn | n < ω〉 be V -generic Prikry
sequence for U, and suppose that A ∈ V [〈cn | n < ω〉] diagonalize (Cubκ)V .
Then, there exists ξ < κ such that A \ ξ ⊆ {cn | n < ω}. In particular,
|A \ ξ| ≤ ℵ0.

On the other hand, just forcing a Prikry sequence is not enough:

Theorem 31

Let C be a witness for the strong negation. Then there exists D, such that:

1 D is also a witness for the strong negation;

2 For every normal ultrafilter U over κ, forcing with Prikry(U) yields a generic
extension where D cease to be a witness.
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